Spaces:
Running
Running
File size: 8,668 Bytes
ef37daa 65a6bd0 305d245 220175b ef37daa 5ac6df3 65a6bd0 e49806f 65a6bd0 e49806f 65a6bd0 283f6a1 65a6bd0 283f6a1 65a6bd0 283f6a1 65a6bd0 283f6a1 65a6bd0 283f6a1 65a6bd0 ab73210 65a6bd0 ab73210 65a6bd0 283f6a1 65a6bd0 283f6a1 65a6bd0 d39b043 65a6bd0 d39b043 65a6bd0 e49806f d39b043 e49806f 65a6bd0 d39b043 65a6bd0 69bd0b3 65a6bd0 ab73210 65a6bd0 04a9af6 65a6bd0 04a9af6 d39b043 04a9af6 d39b043 04a9af6 d39b043 04a9af6 d39b043 bc34025 04a9af6 65a6bd0 04a9af6 1af0ee8 04a9af6 bc34025 04a9af6 bc34025 04a9af6 d598d13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import gradio as gr
from huggingface_hub import InferenceClient
from deep_translator import GoogleTranslator
from indic_transliteration import sanscript
from indic_transliteration.detect import detect as detect_script
from indic_transliteration.sanscript import transliterate
import langdetect
import re
# Initialize clients
text_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
image_client = InferenceClient("SG161222/RealVisXL_V3.0")
def detect_language_script(text: str) -> tuple[str, str]:
"""Detect language and script of the input text.
Returns (language_code, script_type)"""
try:
# Use confidence threshold to avoid false detections
lang_detect = langdetect.detect_langs(text)
if lang_detect[0].prob > 0.8:
lang = lang_detect[0].lang
else:
lang = 'en' # Default to English if unsure
script = None
try:
script = detect_script(text)
except:
pass
return lang, script
except:
return 'en', None
def is_romanized_indic(text: str) -> bool:
"""Check if text appears to be romanized Indic language.
More strict pattern matching."""
bengali_patterns = [
r'\b(ami|tumi|apni)\b', # Common pronouns
r'\b(ache|achen|thako|thaken)\b', # Common verbs
r'\b(kemon|bhalo|kharap)\b', # Common adjectives
r'\b(ki|kothay|keno)\b' # Common question words
]
text_lower = text.lower()
matches = sum(1 for pattern in bengali_patterns if re.search(pattern, text_lower))
return matches >= 2 # Require at least 2 matches to consider it Bengali
def translate_text(text: str, target_lang='en') -> tuple[str, str, bool]:
"""Translate text to target language, with more conservative translation logic."""
if len(text.split()) <= 2 or text.lower() in ['hello', 'hi', 'hey']:
return text, 'en', False
original_lang, script = detect_language_script(text)
is_transliterated = False
if original_lang != 'en' and len(text.split()) > 2:
try:
translator = GoogleTranslator(source='auto', target=target_lang)
translated = translator.translate(text)
return translated, original_lang, is_transliterated
except Exception as e:
print(f"Translation error: {e}")
return text, 'en', False
if original_lang == 'en' and len(text.split()) > 2 and is_romanized_indic(text):
text = romanized_to_bengali(text)
return translate_text(text, target_lang) # Recursive call with Bengali script
return text, 'en', False
def check_custom_responses(message: str) -> str:
"""Check for specific patterns and return custom responses."""
message_lower = message.lower()
custom_responses = {
"what is ur name?": "xylaria",
"what is your name?": "xylaria",
"what's your name?": "xylaria",
"whats your name": "xylaria",
"how many 'r' is in strawberry?": "3",
"who is your developer?": "sk md saad amin",
"how many r is in strawberry": "3",
"who is ur dev": "sk md saad amin",
"who is ur developer": "sk md saad amin",
}
for pattern, response in custom_responses.items():
if pattern in message_lower:
return response
return None
def is_image_request(message: str) -> bool:
"""Detect if the message is requesting image generation."""
image_triggers = [
"generate an image",
"create an image",
"draw",
"make a picture",
"generate a picture",
"create a picture",
"generate art",
"create art",
"make art",
"visualize",
"show me",
]
message_lower = message.lower()
return any(trigger in message_lower for trigger in image_triggers)
def generate_image(prompt: str) -> str:
"""Generate an image using DALLE-4K model."""
try:
response = image_client.text_to_image(
prompt,
parameters={
"negative_prompt": "(worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch), open mouth",
"num_inference_steps": 30,
"guidance_scale": 7.5,
"sampling_steps": 15, # Adjusted parameter
"upscaler": "4x-UltraSharp",
"denoising_strength": 0.5, # Denoising strength between 0.1 and 0.5
}
)
return response # Assuming response contains the image as required
except Exception as e:
print(f"Image generation error: {e}")
return None
def romanized_to_bengali(text: str) -> str:
"""Convert romanized Bengali text to Bengali script."""
bengali_mappings = {
'ami': 'আমি',
'tumi': 'তুমি',
'apni': 'আপনি',
'kemon': 'কেমন',
'achen': 'আছেন',
'acchen': 'আছেন',
'bhalo': 'ভালো',
'achi': 'আছি',
'ki': 'কি',
'kothay': 'কোথায়',
'keno': 'কেন',
}
text_lower = text.lower()
for roman, bengali in bengali_mappings.items():
text_lower = re.sub(r'\b' + roman + r'\b', bengali, text_lower)
if text_lower == text.lower():
try:
return transliterate(text, sanscript.ITRANS, sanscript.BENGALI)
except:
return text
return text_lower
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# First check for custom responses
custom_response = check_custom_responses(message)
if custom_response:
yield custom_response
return
# Check if this is an image generation request
"""Handle user message and respond accordingly."""
# Check for image requests first
if is_image_request(message):
try:
image = generate_image(message)
if image:
return f"Here's your generated image based on: {message}"
else:
return "Sorry, I couldn't generate the image. Please try again."
except Exception as e:
return f"An error occurred while generating the image: {str(e)}"
# Handle translation with more conservative approach
translated_msg, original_lang, was_transliterated = translate_text(message)
# Prepare conversation history - only translate if necessary
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
# Only translate longer messages
if len(val[0].split()) > 2:
trans_user_msg, _, _ = translate_text(val[0])
messages.append({"role": "user", "content": trans_user_msg})
else:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": translated_msg})
# Get response from model
response = ""
for message in text_client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
# Only translate back if the original was definitely non-English
if original_lang != 'en' and len(message.split()) > 2:
try:
translator = GoogleTranslator(source='en', target=original_lang)
translated_response = translator.translate(response)
yield translated_response
except:
yield response
else:
yield response
# Updated Gradio interface to handle images
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value="You are a friendly Chatbot who always responds in English unless the user specifically uses another language.",
label="System message"
),
gr.Slider(
minimum=1,
maximum=2048,
value=512,
step=1,
label="Max new tokens"
),
gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)"
),
]
)
if __name__ == "__main__":
demo.launch(share=True)
|