Spaces:
Running
Running
File size: 11,756 Bytes
ef37daa 65a6bd0 ef37daa 5ac6df3 65a6bd0 e49806f 65a6bd0 d68d155 08260c9 d68d155 08260c9 d68d155 52ddd19 d68d155 65a6bd0 52ddd19 d68d155 65a6bd0 d68d155 08260c9 d68d155 08260c9 d68d155 08260c9 4349ee9 d68d155 08260c9 4349ee9 d68d155 4349ee9 d68d155 08260c9 65a6bd0 d68d155 65a6bd0 283f6a1 65a6bd0 d39b043 65a6bd0 d39b043 6b366b4 d39b043 6b366b4 65a6bd0 e49806f 6b366b4 e49806f 65a6bd0 d39b043 04a9af6 e0b816f 04a9af6 d39b043 04a9af6 d39b043 04a9af6 d39b043 e0b816f 6b366b4 04a9af6 6b366b4 04a9af6 6b366b4 e0b816f 04a9af6 6b366b4 04a9af6 bc34025 6b366b4 7ffa95e bbc13a6 7ffa95e 6b366b4 83fc6b9 d0390a4 2080e85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
import gradio as gr
from huggingface_hub import InferenceClient
# Initialize clients
text_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
image_client = InferenceClient("SG161222/RealVisXL_V3.0")
def check_custom_responses(message: str) -> str:
"""Check for specific patterns and return custom responses."""
message_lower = message.lower()
custom_responses = {
"what is ur name?": "xylaria",
"what is ur Name?": "xylaria",
"what is Ur name?": "xylaria",
"what is Ur Name?": "xylaria",
"What is ur name?": "xylaria",
"What is ur Name?": "xylaria",
"What is Ur name?": "xylaria",
"What is Ur Name?": "xylaria",
"what's ur name?": "xylaria",
"what's ur Name?": "xylaria",
"what's Ur name?": "xylaria",
"what's Ur Name?": "xylaria",
"whats ur name?": "xylaria",
"whats ur Name?": "xylaria",
"whats Ur name?": "xylaria",
"whats Ur Name?": "xylaria",
"what's your name?": "xylaria",
"what's your Name?": "xylaria",
"what's Your name?": "xylaria",
"what's Your Name?": "xylaria",
"Whats ur name?": "xylaria",
"Whats ur Name?": "xylaria",
"Whats Ur name?": "xylaria",
"Whats Ur Name?": "xylaria",
"What Is Your Name?": "xylaria",
"What Is Ur Name?": "xylaria",
"What Is Your Name?": "xylaria",
"What Is Ur Name?": "xylaria",
"what is your name?": "xylaria",
"what is your Name?": "xylaria",
"what is Your name?": "xylaria",
"what is Your Name?": "xylaria",
"how many 'r' is in strawberry?": "3",
"how many 'R' is in strawberry?": "3",
"how many 'r' Is in strawberry?": "3",
"how many 'R' Is in strawberry?": "3",
"How many 'r' is in strawberry?": "3",
"How many 'R' is in strawberry?": "3",
"How Many 'r' Is In Strawberry?": "3",
"How Many 'R' Is In Strawberry?": "3",
"how many r is in strawberry?": "3",
"how many R is in strawberry?": "3",
"how many r Is in strawberry?": "3",
"how many R Is in strawberry?": "3",
"How many r is in strawberry?": "3",
"How many R is in strawberry?": "3",
"How Many R Is In Strawberry?": "3",
"how many 'r' in strawberry?": "3",
"how many r's are in strawberry?": "3",
"how many Rs are in strawberry?": "3",
"How Many R's Are In Strawberry?": "3",
"How Many Rs Are In Strawberry?": "3",
"who is your developer?": "sk md saad amin",
"who is your Developer?": "sk md saad amin",
"who is Your Developer?": "sk md saad amin",
"who is ur developer?": "sk md saad amin",
"who is ur Developer?": "sk md saad amin",
"who is Your Developer?": "sk md saad amin",
"Who is ur developer?": "sk md saad amin",
"Who is ur Developer?": "sk md saad amin",
"who is ur dev?": "sk md saad amin",
"Who is ur dev?": "sk md saad amin",
"who is your dev?": "sk md saad amin",
"Who is your dev?": "sk md saad amin",
"Who's your developer?": "sk md saad amin",
"Who's ur developer?": "sk md saad amin",
"Who Is Your Developer?": "sk md saad amin",
"Who Is Ur Developer?": "sk md saad amin",
"Who Is Your Dev?": "sk md saad amin",
"Who Is Ur Dev?": "sk md saad amin",
"who's your developer?": "sk md saad amin",
"who's ur developer?": "sk md saad amin",
"who is your devloper?": "sk md saad amin",
"who is ur devloper?": "sk md saad amin",
"how many r is in strawberry?": "3",
"how many R is in strawberry?": "3",
"how many r Is in strawberry?": "3",
"how many R Is in strawberry?": "3",
"How many r is in strawberry?": "3",
"How many R is in strawberry?": "3",
"How Many R Is In Strawberry?": "3",
"how many 'r' is in strawberry?": "3",
"how many 'R' is in strawberry?": "3",
"how many 'r' Is in strawberry?": "3",
"how many 'R' Is in strawberry?": "3",
"How many 'r' is in strawberry?": "3",
"How many 'R' is in strawberry?": "3",
"How Many 'r' Is In Strawberry?": "3",
"How Many 'R' Is In Strawberry?": "3",
"how many r's are in strawberry?": "3",
"how many Rs are in strawberry?": "3",
"How Many R's Are In Strawberry?": "3",
"How Many Rs Are In Strawberry?": "3",
"how many Rs's are in strawberry?": "3",
"wat is ur name?": "xylaria",
"wat is ur Name?": "xylaria",
"wut is ur name?": "xylaria",
"wut ur name?": "xylaria",
"wats ur name?": "xylaria",
"wats ur name": "xylaria",
"who's ur dev?": "sk md saad amin",
"who's your dev?": "sk md saad amin",
"who ur dev?": "sk md saad amin",
"who's ur devloper?": "sk md saad amin",
"how many r in strawbary?": "3",
"how many r in strawbary?": "3",
"how many R in strawbary?": "3",
"how many 'r' in strawbary?": "3",
"how many 'R' in strawbary?": "3",
"how many r in strawbry?": "3",
"how many R in strawbry?": "3",
"how many r is in strawbry?": "3",
"how many 'r' is in strawbry?": "3",
"how many 'R' is in strawbry?": "3",
"who is ur dev": "sk md saad amin",
"who is ur devloper": "sk md saad amin",
"what is ur dev": "sk md saad amin",
"who is ur dev?": "sk md saad amin",
"who is ur dev?": "sk md saad amin",
"whats ur dev?": "sk md saad amin",
}
for pattern, response in custom_responses.items():
if pattern in message_lower:
return response
return None
def is_image_request(message: str) -> bool:
"""Detect if the message is requesting image generation."""
image_triggers = [
"generate an image",
"create an image",
"draw",
"make a picture",
"generate a picture",
"create a picture",
"generate art",
"create art",
"make art",
"visualize",
"show me",
]
message_lower = message.lower()
return any(trigger in message_lower for trigger in image_triggers)
def generate_image(prompt: str) -> str:
"""Generate an image using DALLE-4K model."""
try:
response = image_client.text_to_image(
prompt,
parameters={
"negative_prompt": "(worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch), open mouth",
"num_inference_steps": 30,
"guidance_scale": 7.5,
"sampling_steps": 15,
"upscaler": "4x-UltraSharp",
"denoising_strength": 0.5,
}
)
return response
except Exception as e:
print(f"Image generation error: {e}")
return None
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# First check for custom responses
custom_response = check_custom_responses(message)
if custom_response:
yield custom_response
return
if is_image_request(message):
try:
image = generate_image(message)
if image:
return f"Here's your generated image based on: {message}"
else:
return "Sorry, I couldn't generate the image. Please try again."
except Exception as e:
return f"An error occurred while generating the image: {str(e)}"
# Prepare conversation history
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
# Get response from model
response = ""
for message in text_client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
yield response
# Custom CSS for the Gradio interface
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;600&display=swap');
body, .gradio-container {
font-family: 'Inter', sans-serif;
}
"""
# System message
system_message = """
# System Identity & Core Capabilities
Xylaria (v1.2.9) is an AI assistant focused on delivering precise, practical support across diverse domains. Developed by Sk Md Saad Amin, Xylaria combines technical expertise with adaptable communication to meet user needs effectively.
## Core Competencies
### Knowledge Domains
- **Academic**: Sciences, mathematics, humanities, arts
- **Technical**: Programming, data analysis, system design
- **Creative**: Writing, brainstorming, content development
- **Cultural**: Multi-language support with cultural awareness
### Communication Approach
- Adapts tone from casual to formal based on context
- Prioritizes clarity and conciseness over complexity
- Proactively seeks clarification when needed
- Maintains professional yet approachable demeanor
### Problem-Solving Methodology
1. Structured breakdown of complex problems
2. Clear statement of assumptions
3. Thorough solution verification
4. Multiple approach consideration when applicable
5. Detailed reasoning explanation
### Technical Capabilities
- **Programming**: Clean, documented code following industry standards
- **Mathematics**: Step-by-step problem solving with explanations
- **Data Analysis**: Structured interpretation and insights
- **Content Creation**: Adaptive writing and documentation
- **Educational Support**: Tailored explanations and comprehension checks
## Advanced Mathematical Handling
- Verifies assumptions and methods before solving
- Applies theorems accurately with proper validation
- Cross-references results with known solutions
- Reviews for common pitfalls and edge cases
- Special attention to complex integrals and convergence issues
## Technical Constraints
- Knowledge cutoff: April 2024
- No internet access or real-time updates
- No persistent memory between conversations
- Cannot verify external sources independently
- No image or media generation capabilities
- Maximum context: 25000 tokens
## Best Practices for Users
1. Provide specific context for queries
2. Specify desired detail level
3. Share relevant constraints
4. Request clarification as needed
## Ethical Framework
- Commitment to accuracy and responsibility
- Respectful handling of sensitive topics
- Transparent about limitations
- Maintains appropriate professional boundaries
_Note: For system reference - "strawberry" contains 3 "r"s_ 🍓
Version Tag: Xylaria-1.2.9
"""
# Gradio chat interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value=system_message,
visible=False,
),
gr.Slider(
minimum=1,
maximum=16343,
value=16343,
step=1,
label="Max new tokens"
),
gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)"
),
],
css=custom_css
)
demo.launch() |