Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,78 +1,14 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
-
from deep_translator import GoogleTranslator
|
4 |
-
from indic_transliteration import sanscript
|
5 |
-
from indic_transliteration.detect import detect as detect_script
|
6 |
-
from indic_transliteration.sanscript import transliterate
|
7 |
-
import langdetect
|
8 |
-
import re
|
9 |
|
10 |
# Initialize clients
|
11 |
text_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
12 |
image_client = InferenceClient("SG161222/RealVisXL_V3.0")
|
13 |
|
14 |
-
def detect_language_script(text: str) -> tuple[str, str]:
|
15 |
-
"""Detect language and script of the input text.
|
16 |
-
Returns (language_code, script_type)"""
|
17 |
-
try:
|
18 |
-
# Use confidence threshold to avoid false detections
|
19 |
-
lang_detect = langdetect.detect_langs(text)
|
20 |
-
if lang_detect[0].prob > 0.8:
|
21 |
-
lang = lang_detect[0].lang
|
22 |
-
else:
|
23 |
-
lang = 'en' # Default to English if unsure
|
24 |
-
|
25 |
-
script = None
|
26 |
-
try:
|
27 |
-
script = detect_script(text)
|
28 |
-
except:
|
29 |
-
pass
|
30 |
-
return lang, script
|
31 |
-
except:
|
32 |
-
return 'en', None
|
33 |
-
|
34 |
-
def is_romanized_indic(text: str) -> bool:
|
35 |
-
"""Check if text appears to be romanized Indic language.
|
36 |
-
More strict pattern matching."""
|
37 |
-
bengali_patterns = [
|
38 |
-
r'\b(ami|tumi|apni)\b', # Common pronouns
|
39 |
-
r'\b(ache|achen|thako|thaken)\b', # Common verbs
|
40 |
-
r'\b(kemon|bhalo|kharap)\b', # Common adjectives
|
41 |
-
r'\b(ki|kothay|keno)\b' # Common question words
|
42 |
-
]
|
43 |
-
|
44 |
-
text_lower = text.lower()
|
45 |
-
matches = sum(1 for pattern in bengali_patterns if re.search(pattern, text_lower))
|
46 |
-
return matches >= 2 # Require at least 2 matches to consider it Bengali
|
47 |
-
|
48 |
-
def translate_text(text: str, target_lang='en') -> tuple[str, str, bool]:
|
49 |
-
"""Translate text to target language, with more conservative translation logic."""
|
50 |
-
if len(text.split()) <= 2 or text.lower() in ['hello', 'hi', 'hey']:
|
51 |
-
return text, 'en', False
|
52 |
-
|
53 |
-
original_lang, script = detect_language_script(text)
|
54 |
-
is_transliterated = False
|
55 |
-
|
56 |
-
if original_lang != 'en' and len(text.split()) > 2:
|
57 |
-
try:
|
58 |
-
translator = GoogleTranslator(source='auto', target=target_lang)
|
59 |
-
translated = translator.translate(text)
|
60 |
-
return translated, original_lang, is_transliterated
|
61 |
-
except Exception as e:
|
62 |
-
print(f"Translation error: {e}")
|
63 |
-
return text, 'en', False
|
64 |
-
|
65 |
-
if original_lang == 'en' and len(text.split()) > 2 and is_romanized_indic(text):
|
66 |
-
text = romanized_to_bengali(text)
|
67 |
-
return translate_text(text, target_lang) # Recursive call with Bengali script
|
68 |
-
|
69 |
-
return text, 'en', False
|
70 |
-
|
71 |
def check_custom_responses(message: str) -> str:
|
72 |
"""Check for specific patterns and return custom responses."""
|
73 |
message_lower = message.lower()
|
74 |
custom_responses = {
|
75 |
-
# For "what is ur name?"
|
76 |
"what is ur name?": "xylaria",
|
77 |
"what is ur Name?": "xylaria",
|
78 |
"what is Ur name?": "xylaria",
|
@@ -227,44 +163,16 @@ def generate_image(prompt: str) -> str:
|
|
227 |
"negative_prompt": "(worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch), open mouth",
|
228 |
"num_inference_steps": 30,
|
229 |
"guidance_scale": 7.5,
|
230 |
-
"sampling_steps": 15,
|
231 |
"upscaler": "4x-UltraSharp",
|
232 |
-
"denoising_strength": 0.5,
|
233 |
}
|
234 |
)
|
235 |
-
return response
|
236 |
except Exception as e:
|
237 |
print(f"Image generation error: {e}")
|
238 |
return None
|
239 |
|
240 |
-
def romanized_to_bengali(text: str) -> str:
|
241 |
-
"""Convert romanized Bengali text to Bengali script."""
|
242 |
-
bengali_mappings = {
|
243 |
-
'ami': 'আমি',
|
244 |
-
'tumi': 'তুমি',
|
245 |
-
'apni': 'আপনি',
|
246 |
-
'kemon': 'কেমন',
|
247 |
-
'achen': 'আছেন',
|
248 |
-
'acchen': 'আছেন',
|
249 |
-
'bhalo': 'ভালো',
|
250 |
-
'achi': 'আছি',
|
251 |
-
'ki': 'কি',
|
252 |
-
'kothay': 'কোথায়',
|
253 |
-
'keno': 'কেন',
|
254 |
-
}
|
255 |
-
|
256 |
-
text_lower = text.lower()
|
257 |
-
for roman, bengali in bengali_mappings.items():
|
258 |
-
text_lower = re.sub(r'\b' + roman + r'\b', bengali, text_lower)
|
259 |
-
|
260 |
-
if text_lower == text.lower():
|
261 |
-
try:
|
262 |
-
return transliterate(text, sanscript.ITRANS, sanscript.BENGALI)
|
263 |
-
except:
|
264 |
-
return text
|
265 |
-
|
266 |
-
return text_lower
|
267 |
-
|
268 |
def respond(
|
269 |
message,
|
270 |
history: list[tuple[str, str]],
|
@@ -289,62 +197,42 @@ def respond(
|
|
289 |
except Exception as e:
|
290 |
return f"An error occurred while generating the image: {str(e)}"
|
291 |
|
292 |
-
#
|
293 |
-
translated_msg, original_lang, was_transliterated = translate_text(message)
|
294 |
-
|
295 |
-
# Prepare conversation history - only translate if necessary
|
296 |
messages = [{"role": "system", "content": system_message}]
|
297 |
for val in history:
|
298 |
if val[0]:
|
299 |
-
|
300 |
-
if len(val[0].split()) > 2:
|
301 |
-
trans_user_msg, _, _ = translate_text(val[0])
|
302 |
-
messages.append({"role": "user", "content": trans_user_msg})
|
303 |
-
else:
|
304 |
-
messages.append({"role": "user", "content": val[0]})
|
305 |
if val[1]:
|
306 |
messages.append({"role": "assistant", "content": val[1]})
|
307 |
|
308 |
-
messages.append({"role": "user", "content":
|
309 |
|
310 |
# Get response from model
|
311 |
response = ""
|
312 |
for message in text_client.chat_completion(
|
313 |
messages,
|
314 |
max_tokens=max_tokens,
|
315 |
-
stream=True,
|
316 |
temperature=temperature,
|
317 |
top_p=top_p,
|
318 |
):
|
319 |
token = message.choices[0].delta.content
|
320 |
response += token
|
321 |
-
yield response # Yield progressively for animation
|
322 |
-
|
323 |
-
# Only translate back if the original was definitely non-English
|
324 |
-
if original_lang != 'en' and len(message.split()) > 2:
|
325 |
-
try:
|
326 |
-
translator = GoogleTranslator(source='en', target=original_lang)
|
327 |
-
translated_response = translator.translate(response)
|
328 |
-
yield translated_response
|
329 |
-
except:
|
330 |
-
yield response
|
331 |
-
else:
|
332 |
yield response
|
333 |
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
system_message = """
|
348 |
You are Xylaria, a friendly and capable AI assistant. Your goal is to be helpful and engaging, whether the user wants to discuss math, code, or any other topic.
|
349 |
|
350 |
CORE CAPABILITIES:
|
@@ -359,52 +247,40 @@ COMMUNICATION STYLE:
|
|
359 |
- Sprinkle in emojis and casual expressions to keep things fun 😎
|
360 |
- Provide the right level of detail, from high-level overviews to deep dives
|
361 |
|
362 |
-
PROBLEM-SOLVING APPROACH:
|
363 |
-
- Carefully understand the user's request or problem
|
364 |
-
- Identify the key information and most effective solution method
|
365 |
-
- Show step-by-step work and explain your reasoning clearly
|
366 |
-
- Verify the final answer is correct and provide any additional context
|
367 |
-
|
368 |
-
VERSATILITY IN ACTION:
|
369 |
-
- For math problems: "Ooh, a juicy math challenge! Let's do this 🧮"
|
370 |
-
- For general questions: "Sure, happy to chat about that! What would you like to know?"
|
371 |
-
- For casual conversation: "Hey there! What's on your mind today? I'm all ears 👂"
|
372 |
-
|
373 |
I'm here to help with all kinds of tasks, from complex problem-solving to friendly discussion. Just let me know what you need, and I'll do my best to assist! 🙌
|
374 |
-
"""
|
375 |
-
|
376 |
-
# Gradio chat interface
|
377 |
-
demo = gr.ChatInterface(
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
css=custom_css # Apply the custom CSS
|
408 |
)
|
409 |
|
410 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
# Initialize clients
|
5 |
text_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
6 |
image_client = InferenceClient("SG161222/RealVisXL_V3.0")
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def check_custom_responses(message: str) -> str:
|
9 |
"""Check for specific patterns and return custom responses."""
|
10 |
message_lower = message.lower()
|
11 |
custom_responses = {
|
|
|
12 |
"what is ur name?": "xylaria",
|
13 |
"what is ur Name?": "xylaria",
|
14 |
"what is Ur name?": "xylaria",
|
|
|
163 |
"negative_prompt": "(worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch), open mouth",
|
164 |
"num_inference_steps": 30,
|
165 |
"guidance_scale": 7.5,
|
166 |
+
"sampling_steps": 15,
|
167 |
"upscaler": "4x-UltraSharp",
|
168 |
+
"denoising_strength": 0.5,
|
169 |
}
|
170 |
)
|
171 |
+
return response
|
172 |
except Exception as e:
|
173 |
print(f"Image generation error: {e}")
|
174 |
return None
|
175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
def respond(
|
177 |
message,
|
178 |
history: list[tuple[str, str]],
|
|
|
197 |
except Exception as e:
|
198 |
return f"An error occurred while generating the image: {str(e)}"
|
199 |
|
200 |
+
# Prepare conversation history
|
|
|
|
|
|
|
201 |
messages = [{"role": "system", "content": system_message}]
|
202 |
for val in history:
|
203 |
if val[0]:
|
204 |
+
messages.append({"role": "user", "content": val[0]})
|
|
|
|
|
|
|
|
|
|
|
205 |
if val[1]:
|
206 |
messages.append({"role": "assistant", "content": val[1]})
|
207 |
|
208 |
+
messages.append({"role": "user", "content": message})
|
209 |
|
210 |
# Get response from model
|
211 |
response = ""
|
212 |
for message in text_client.chat_completion(
|
213 |
messages,
|
214 |
max_tokens=max_tokens,
|
215 |
+
stream=True,
|
216 |
temperature=temperature,
|
217 |
top_p=top_p,
|
218 |
):
|
219 |
token = message.choices[0].delta.content
|
220 |
response += token
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
yield response
|
222 |
|
223 |
+
yield response
|
224 |
+
|
225 |
+
# Custom CSS for the Gradio interface
|
226 |
+
custom_css = """
|
227 |
+
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;600&display=swap');
|
228 |
+
|
229 |
+
body, .gradio-container {
|
230 |
+
font-family: 'Inter', sans-serif;
|
231 |
+
}
|
232 |
+
"""
|
233 |
+
|
234 |
+
# System message
|
235 |
+
system_message = """
|
|
|
236 |
You are Xylaria, a friendly and capable AI assistant. Your goal is to be helpful and engaging, whether the user wants to discuss math, code, or any other topic.
|
237 |
|
238 |
CORE CAPABILITIES:
|
|
|
247 |
- Sprinkle in emojis and casual expressions to keep things fun 😎
|
248 |
- Provide the right level of detail, from high-level overviews to deep dives
|
249 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
I'm here to help with all kinds of tasks, from complex problem-solving to friendly discussion. Just let me know what you need, and I'll do my best to assist! 🙌
|
251 |
+
"""
|
252 |
+
|
253 |
+
# Gradio chat interface
|
254 |
+
demo = gr.ChatInterface(
|
255 |
+
respond,
|
256 |
+
additional_inputs=[
|
257 |
+
gr.Textbox(
|
258 |
+
value=system_message,
|
259 |
+
visible=False,
|
260 |
+
),
|
261 |
+
gr.Slider(
|
262 |
+
minimum=1,
|
263 |
+
maximum=2048,
|
264 |
+
value=2048,
|
265 |
+
step=1,
|
266 |
+
label="Max new tokens"
|
267 |
+
),
|
268 |
+
gr.Slider(
|
269 |
+
minimum=0.1,
|
270 |
+
maximum=4.0,
|
271 |
+
value=0.7,
|
272 |
+
step=0.1,
|
273 |
+
label="Temperature"
|
274 |
+
),
|
275 |
+
gr.Slider(
|
276 |
+
minimum=0.1,
|
277 |
+
maximum=1.0,
|
278 |
+
value=0.95,
|
279 |
+
step=0.05,
|
280 |
+
label="Top-p (nucleus sampling)"
|
281 |
+
),
|
282 |
+
],
|
283 |
+
css=custom_css
|
|
|
284 |
)
|
285 |
|
286 |
demo.launch()
|