Spaces:
Running
Running
File size: 10,239 Bytes
ef37daa 305d245 45b720d ef37daa 5ac6df3 45b720d f147126 305d245 5ac6df3 f147126 69bd0b3 5ac6df3 69bd0b3 5ac6df3 305d245 f147126 305d245 f147126 305d245 5ac6df3 69bd0b3 305d245 69bd0b3 305d245 69bd0b3 305d245 5ac6df3 69bd0b3 5ac6df3 305d245 69bd0b3 305d245 69bd0b3 5ac6df3 69bd0b3 5ac6df3 69bd0b3 ef37daa a387258 e4af908 a387258 464da3a 5ac6df3 45b720d 5ac6df3 45b720d 5ac6df3 69bd0b3 305d245 69bd0b3 305d245 69bd0b3 305d245 ef37daa 5ac6df3 ef37daa a387258 ef37daa 5ac6df3 45b720d 5ac6df3 45b720d 5ac6df3 69bd0b3 305d245 5ac6df3 69bd0b3 f147126 ef37daa 464da3a 69bd0b3 464da3a a387258 f147126 5ac6df3 f147126 ef37daa 5ac6df3 ef37daa 5ac6df3 f147126 5ac6df3 ef37daa 5ac6df3 464da3a a387258 69bd0b3 a387258 ef37daa a387258 ef37daa a387258 45b720d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import gradio as gr
from huggingface_hub import InferenceClient
from deep_translator import GoogleTranslator
from indic_transliteration import sanscript
from indic_transliteration.detect import detect as detect_script
from indic_transliteration.sanscript import transliterate
import langdetect
import re
import requests
import json
import base64
from PIL import Image
import io
# Initialize clients
text_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
SPACE_URL = "https://ijohn07-dalle-4k.hf.space"
def detect_language_script(text: str) -> tuple[str, str]:
"""Detect language and script of the input text.
Returns (language_code, script_type)"""
try:
# Use confidence threshold to avoid false detections
lang_detect = langdetect.detect_langs(text)
if lang_detect[0].prob > 0.8:
# Only accept high confidence detections
lang = lang_detect[0].lang
else:
lang = 'en' # Default to English if unsure
script = None
try:
script = detect_script(text)
except:
pass
return lang, script
except:
return 'en', None
def is_romanized_indic(text: str) -> bool:
"""Check if text appears to be romanized Indic language.
More strict pattern matching."""
# Common Bengali romanized patterns with word boundaries
bengali_patterns = [
r'\b(ami|tumi|apni)\b', # Common pronouns
r'\b(ache|achen|thako|thaken)\b', # Common verbs
r'\b(kemon|bhalo|kharap)\b', # Common adjectives
r'\b(ki|kothay|keno)\b' # Common question words
]
# Require multiple matches to confirm it's actually Bengali
text_lower = text.lower()
matches = sum(1 for pattern in bengali_patterns if re.search(pattern, text_lower))
return matches >= 2 # Require at least 2 matches to consider it Bengali
def translate_text(text: str, target_lang='en') -> tuple[str, str, bool]:
"""Translate text to target language, with more conservative translation logic."""
# Skip translation for very short inputs or basic greetings
if len(text.split()) <= 2 or text.lower() in ['hello', 'hi', 'hey']:
return text, 'en', False
original_lang, script = detect_language_script(text)
is_transliterated = False
# Only process if confident it's non-English
if original_lang != 'en' and len(text.split()) > 2:
try:
translator = GoogleTranslator(source='auto', target=target_lang)
translated = translator.translate(text)
return translated, original_lang, is_transliterated
except Exception as e:
print(f"Translation error: {e}")
return text, 'en', False
# Check for romanized Indic text only if it's a longer input
if original_lang == 'en' and len(text.split()) > 2 and is_romanized_indic(text):
text = romanized_to_bengali(text)
return translate_text(text, target_lang) # Recursive call with Bengali script
return text, 'en', False
def check_custom_responses(message: str) -> str:
"""Check for specific patterns and return custom responses."""
message_lower = message.lower()
custom_responses = {
"what is ur name?": "xylaria",
"what is your name?": "xylaria",
"what's your name?": "xylaria",
"whats your name": "xylaria",
"how many 'r' is in strawberry?": "3",
"who is your developer?": "sk md saad amin",
"how many r is in strawberry": "3",
"who is ur dev": "sk md saad amin",
"who is ur developer": "sk md saad amin",
}
for pattern, response in custom_responses.items():
if pattern in message_lower:
return response
return None
def is_image_request(message: str) -> bool:
"""Detect if the message is requesting image generation."""
image_triggers = [
"generate an image",
"create an image",
"draw",
"make a picture",
"generate a picture",
"create a picture",
"generate art",
"create art",
"make art",
"visualize",
"show me",
]
message_lower = message.lower()
return any(trigger in message_lower for trigger in image_triggers)
def generate_image_space(prompt: str) -> Image.Image:
"""Generate an image using the DALLE-4K Space."""
try:
# First get the session hash
response = requests.post(f"{SPACE_URL}/queue/join")
session_hash = response.json().get('session_hash')
# Send the generation request
payload = {
"prompt": prompt,
"negative_prompt": "blurry, bad quality, nsfw",
"num_inference_steps": 30,
"guidance_scale": 7.5,
"session_hash": session_hash
}
response = requests.post(f"{SPACE_URL}/run/predict", json={
"data": [
prompt, # Prompt
"", # Negative prompt
7.5, # Guidance scale
30, # Steps
"DPM++ SDE Karras", # Scheduler
False, # High resolution
False, # Image to image
None, # Image upload
1 # Batch size
],
"session_hash": session_hash
})
# Poll for results
while True:
status_response = requests.post(f"{SPACE_URL}/queue/status", json={
"session_hash": session_hash
})
status_data = status_response.json()
if status_data.get('status') == 'complete':
# Get the image data
image_data = status_data['data']['image']
# Convert base64 to PIL Image
image_bytes = base64.b64decode(image_data.split(',')[1])
image = Image.open(io.BytesIO(image_bytes))
return image
elif status_data.get('status') == 'error':
raise Exception(f"Image generation failed: {status_data.get('error')}")
time.sleep(1) # Wait before polling again
except Exception as e:
print(f"Image generation error: {e}")
return None
def romanized_to_bengali(text: str) -> str:
"""Convert romanized Bengali text to Bengali script."""
bengali_mappings = {
'ami': 'আমি',
'tumi': 'তুমি',
'apni': 'আপনি',
'kemon': 'কেমন',
'achen': 'আছেন',
'acchen': 'আছেন',
'bhalo': 'ভালো',
'achi': 'আছি',
'ki': 'কি',
'kothay': 'কোথায়',
'keno': 'কেন',
}
text_lower = text.lower()
for roman, bengali in bengali_mappings.items():
text_lower = re.sub(r'\b' + roman + r'\b', bengali, text_lower)
if text_lower == text.lower():
try:
return transliterate(text, sanscript.ITRANS, sanscript.BENGALI)
except:
return text
return text_lower
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# First check for custom responses
custom_response = check_custom_responses(message)
if custom_response:
yield custom_response
return
# Check if this is an image generation request
if is_image_request(message):
try:
image = generate_image_space(message)
if image:
yield (image, f"Here's your generated image based on: {message}")
return
else:
yield "Sorry, I couldn't generate the image. Please try again."
return
except Exception as e:
yield f"An error occurred while generating the image: {str(e)}"
return
# Handle translation with more conservative approach
translated_msg, original_lang, was_transliterated = translate_text(message)
# Prepare conversation history - only translate if necessary
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
# Only translate longer messages
if len(val[0].split()) > 2:
trans_user_msg, _, _ = translate_text(val[0])
messages.append({"role": "user", "content": trans_user_msg})
else:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": translated_msg})
# Get response from model
response = ""
for message in text_client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
# Only translate back if the original was definitely non-English
if original_lang != 'en' and len(message.split()) > 2:
try:
translator = GoogleTranslator(source='en', target=original_lang)
translated_response = translator.translate(response)
yield translated_response
except:
yield response
else:
yield response
# Updated Gradio interface to handle images
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value="You are a friendly Chatbot who always responds in English unless the user specifically uses another language.",
label="System message"
),
gr.Slider(
minimum=1,
maximum=2048,
value=512,
step=1,
label="Max new tokens"
),
gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)"
),
]
) |