Spaces:
Running
Running
File size: 13,653 Bytes
ef37daa 65a6bd0 305d245 ef37daa 5ac6df3 65a6bd0 e49806f 65a6bd0 e49806f 65a6bd0 283f6a1 65a6bd0 283f6a1 65a6bd0 283f6a1 65a6bd0 283f6a1 65a6bd0 283f6a1 65a6bd0 ab73210 65a6bd0 ab73210 65a6bd0 283f6a1 65a6bd0 283f6a1 65a6bd0 e49806f 65a6bd0 e49806f 65a6bd0 69bd0b3 65a6bd0 ab73210 65a6bd0 bc34025 65a6bd0 bc34025 65a6bd0 bc34025 ef37daa bc34025 65a6bd0 bc34025 65a6bd0 bc34025 5ac6df3 bc34025 65a6bd0 bc34025 65a6bd0 bc34025 65a6bd0 283f6a1 65a6bd0 bc34025 5ac6df3 65a6bd0 ef37daa 65a6bd0 bc34025 65a6bd0 bc34025 65a6bd0 bc34025 65a6bd0 1af0ee8 65a6bd0 1af0ee8 bc34025 d598d13 bc34025 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
import gradio as gr
from huggingface_hub import InferenceClient
from deep_translator import GoogleTranslator
from indic_transliteration import sanscript
from indic_transliteration.detect import detect as detect_script
from indic_transliteration.sanscript import transliterate
import langdetect
import re
# Initialize clients
text_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
image_client = InferenceClient("SG161222/RealVisXL_V3.0")
def detect_language_script(text: str) -> tuple[str, str]:
"""Detect language and script of the input text.
Returns (language_code, script_type)"""
try:
# Use confidence threshold to avoid false detections
lang_detect = langdetect.detect_langs(text)
if lang_detect[0].prob > 0.8:
# Only accept high confidence detections
lang = lang_detect[0].lang
else:
lang = 'en' # Default to English if unsure
script = None
try:
script = detect_script(text)
except:
pass
return lang, script
except:
return 'en', None
def is_romanized_indic(text: str) -> bool:
"""Check if text appears to be romanized Indic language.
More strict pattern matching."""
# Common Bengali romanized patterns with word boundaries
bengali_patterns = [
r'\b(ami|tumi|apni)\b', # Common pronouns
r'\b(ache|achen|thako|thaken)\b', # Common verbs
r'\b(kemon|bhalo|kharap)\b', # Common adjectives
r'\b(ki|kothay|keno)\b' # Common question words
]
# Require multiple matches to confirm it's actually Bengali
text_lower = text.lower()
matches = sum(1 for pattern in bengali_patterns if re.search(pattern, text_lower))
return matches >= 2 # Require at least 2 matches to consider it Bengali
def translate_text(text: str, target_lang='en') -> tuple[str, str, bool]:
"""Translate text to target language, with more conservative translation logic."""
# Skip translation for very short inputs or basic greetings
if len(text.split()) <= 2 or text.lower() in ['hello', 'hi', 'hey']:
return text, 'en', False
original_lang, script = detect_language_script(text)
is_transliterated = False
# Only process if confident it's non-English
if original_lang != 'en' and len(text.split()) > 2:
try:
translator = GoogleTranslator(source='auto', target=target_lang)
translated = translator.translate(text)
return translated, original_lang, is_transliterated
except Exception as e:
print(f"Translation error: {e}")
return text, 'en', False
# Check for romanized Indic text only if it's a longer input
if original_lang == 'en' and len(text.split()) > 2 and is_romanized_indic(text):
text = romanized_to_bengali(text)
return translate_text(text, target_lang) # Recursive call with Bengali script
return text, 'en', False
def check_custom_responses(message: str) -> str:
"""Check for specific patterns and return custom responses."""
message_lower = message.lower()
custom_responses = {
"what is ur name?": "xylaria",
"what is your name?": "xylaria",
"what's your name?": "xylaria",
"whats your name": "xylaria",
"how many 'r' is in strawberry?": "3",
"who is your developer?": "sk md saad amin",
"how many r is in strawberry": "3",
"who is ur dev": "sk md saad amin",
"who is ur developer": "sk md saad amin",
}
for pattern, response in custom_responses.items():
if pattern in message_lower:
return response
return None
def is_image_request(message: str) -> bool:
"""Detect if the message is requesting image generation."""
image_triggers = [
"generate an image",
"create an image",
"draw",
"make a picture",
"generate a picture",
"create a picture",
"generate art",
"create art",
"make art",
"visualize",
"show me",
]
message_lower = message.lower()
return any(trigger in message_lower for trigger in image_triggers)
def generate_image(prompt: str) -> str:
"""Generate an image using DALLE-4K model."""
try:
response = image_client.text_to_image(
prompt,
parameters={
"negative_prompt": "blurry, bad quality, nsfw",
"num_inference_steps": 30,
"guidance_scale": 7.5
}
)
# Save the image and return the path or base64 string
# Note: Implementation depends on how you want to handle the image output
return response
except Exception as e:
print(f"Image generation error: {e}")
return None
def romanized_to_bengali(text: str) -> str:
"""Convert romanized Bengali text to Bengali script."""
bengali_mappings = {
'ami': 'আমি',
'tumi': 'তুমি',
'apni': 'আপনি',
'kemon': 'কেমন',
'achen': 'আছেন',
'acchen': 'আছেন',
'bhalo': 'ভালো',
'achi': 'আছি',
'ki': 'কি',
'kothay': 'কোথায়',
'keno': 'কেন',
}
text_lower = text.lower()
for roman, bengali in bengali_mappings.items():
text_lower = re.sub(r'\b' + roman + r'\b', bengali, text_lower)
if text_lower == text.lower():
try:
return transliterate(text, sanscript.ITRANS, sanscript.BENGALI)
except:
return text
return text_lower
def create_chat_interface():
# Custom CSS for better styling
custom_css = """
body {
font-family: 'Inter', sans-serif;
}
.chat-container {
padding-top: 0;
padding-bottom: 0;
}
.chat-messages {
scroll-behavior: smooth;
}
.input-container {
border-top: 1px solid #ccc;
}
.input-container textarea {
border-radius: 12px 0 0 12px;
}
.input-container button {
border-radius: 0 12px 12px 0;
}
.loading {
animation: pulse 1.5s ease-in-out infinite;
}
@keyframes pulse {
0% { opacity: 1; }
50% { opacity: 0.5; }
100% { opacity: 1; }
}
"""
# Create the interface with custom theme
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
# Header
with gr.Row():
gr.HTML("""
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Xylaria Chat</title>
<link rel="stylesheet" href="styles.css">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/full.css">
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/vue.js"></script>
</head>
<body>
<div id="app" class="mx-auto max-w-5xl">
<header class="bg-white rounded shadow-lg p-10 text-center mb-10">
<h1 class="text-6xl font-bold text-violet-600 mb-5">✨ Xylaria Chat</h1>
<p class="text-lg font-medium text-gray-600">Your Intelligent Multilingual Assistant</p>
</header>
<section class="bg-white rounded shadow-lg p-10 chat-container">
<div class="chat-messages overflow-y-auto max-h-screen">
<div v-for="(message, index) in messages" :key="index" class="my-4" :class="{ 'flex justify-end': message.type === 'user' }">
<div class="rounded-lg py-4 px-6" :class="{ 'bg-violet-500 text-white': message.type === 'user', 'bg-gray-200': message.type === 'bot' }">{{ message.text }}</div>
</div>
</div>
<div class="input-container flex mt-6">
<textarea v-model="inputText" class="w-full p-4 rounded-lg border-2 border-gray-400 resize-y" rows="3" placeholder="Type a message..."></textarea>
<button @click="sendMessage" class="bg-violet-500 text-white p-3 rounded-lg ml-4 hover:bg-violet-600 transition duration-300">Send</button>
</div>
</section>
</div>
<script src="script.js"></script>
</body>
</html>
""")
# Main chat interface
with gr.Row():
with gr.Column(scale=4):
chatbot = gr.Chatbot(
height=500,
show_label=False,
container=True,
elem_classes=["chat-window"]
)
# Input area with buttons
with gr.Row():
txt = gr.Textbox(
show_label=False,
placeholder="Type your message here...",
container=False
)
send_btn = gr.Button("Send", variant="primary")
clear_btn = gr.Button("Clear")
# Additional features bar
with gr.Row():
audio_input = gr.Audio(source="microphone", type="filepath", label="Voice Input")
image_output = gr.Image(label="Generated Image", visible=False)
# Settings panel (collapsible)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
with gr.Column():
system_msg = gr.Textbox(
value="You are a friendly Chatbot who always responds in English unless the user specifically uses another language.",
label="System Message",
lines=2
)
max_tokens = gr.Slider(
minimum=1,
maximum=2048,
value=512,
step=1,
label="Max Tokens"
)
with gr.Column():
temperature = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)"
)
# Function to handle sending messages
def user_message(message, history):
if message:
return "", history + [[message, None]]
return "", history
def bot_response(history, system_msg, max_tokens, temperature, top_p):
if len(history) == 0:
return history
# Get the last user message
message = history[-1][0]
# Check for custom responses first
custom_response = check_custom_responses(message)
if custom_response:
history[-1][1] = custom_response
return history
# Check for image generation request
if is_image_request(message):
try:
image = generate_image(message)
if image:
history[-1][1] = "Here's your generated image!"
# Handle image display logic
return history
except Exception as e:
history[-1][1] = f"Sorry, I couldn't generate the image: {str(e)}"
return history
# Handle regular text responses
try:
translated_msg, original_lang, was_transliterated = translate_text(message)
response = respond(
translated_msg,
history[:-1],
system_msg,
max_tokens,
temperature,
top_p
)
# Stream the response
partial_response = ""
for chunk in response:
partial_response += chunk
history[-1][1] = partial_response
yield history
time.sleep(0.02) # Add slight delay for smooth streaming
except Exception as e:
history[-1][1] = f"An error occurred: {str(e)}"
yield history
# Event handlers
txt_msg = txt.submit(
user_message,
[txt, chatbot],
[txt, chatbot],
queue=False
).then(
bot_response,
[chatbot, system_msg, max_tokens, temperature, top_p],
chatbot
)
send_btn.click(
user_message,
[txt, chatbot],
[txt, chatbot],
queue=False
).then(
bot_response,
[chatbot, system_msg, max_tokens, temperature, top_p],
chatbot
)
clear_btn.click(lambda: None, None, chatbot, queue=False)
# Handle voice input
def process_audio(audio_file):
# Add your audio transcription logic here
return "Audio input received! (Add your transcription logic)"
audio_input.change(
process_audio,
inputs=[audio_input],
outputs=[txt]
)
return demo
# Create and launch the interface
demo = create_chat_interface()
if __name__ == "__main__":
demo.launch(share=True)
|