File size: 17,282 Bytes
8f6825e
ca2b63a
 
 
8f6825e
574b6ca
 
 
 
a42d6f7
51e7f46
26e4907
10e9b7d
a42d6f7
 
 
 
 
 
 
 
8f6825e
a42d6f7
 
 
 
 
757ebd9
e80aab9
3db6293
e80aab9
ca2b63a
 
31243f4
8f6825e
a42d6f7
8f6825e
 
 
 
 
 
 
 
 
51e7f46
8f6825e
 
 
51e7f46
 
8f6825e
 
51e7f46
8f6825e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a42d6f7
8f6825e
ca2b63a
 
8f6825e
ca2b63a
8f6825e
ca2b63a
 
8f6825e
ca2b63a
8f6825e
ca2b63a
 
a42d6f7
8f6825e
51e7f46
 
 
 
 
8f6825e
 
51e7f46
8f6825e
51e7f46
8f6825e
51e7f46
ca2b63a
8f6825e
 
 
a42d6f7
 
8f6825e
a42d6f7
757ebd9
 
8f6825e
26e4907
8f6825e
 
 
 
 
 
 
 
 
c549c70
8f6825e
 
 
 
 
26e4907
757ebd9
8f6825e
 
ca2b63a
8f6825e
 
 
26e4907
8f6825e
 
 
 
 
 
 
 
 
26e4907
8f6825e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca2b63a
8f6825e
 
c549c70
8f6825e
 
c549c70
8f6825e
 
 
 
 
 
 
c549c70
8f6825e
 
 
 
 
 
c549c70
8f6825e
 
c549c70
8f6825e
 
 
 
26e4907
 
8f6825e
 
 
 
 
 
 
 
 
 
 
c549c70
8f6825e
51e7f46
ca2b63a
8f6825e
 
 
 
 
26e4907
8f6825e
 
 
 
c549c70
8f6825e
c549c70
8f6825e
 
 
 
 
 
 
 
 
 
 
26e4907
8f6825e
 
 
 
 
 
 
26e4907
8f6825e
 
26e4907
757ebd9
8f6825e
 
 
 
 
51e7f46
 
ca2b63a
8f6825e
757ebd9
3c4371f
8f6825e
 
 
 
 
3c4371f
7e4a06b
31243f4
 
e80aab9
8f6825e
 
 
31243f4
757ebd9
31243f4
8f6825e
 
757ebd9
36ed51a
3c4371f
8f6825e
eccf8e4
8f6825e
7d65c66
31243f4
8f6825e
7d65c66
8f6825e
e80aab9
8f6825e
7d65c66
 
a42d6f7
 
31243f4
8f6825e
a42d6f7
8f6825e
31243f4
a42d6f7
8f6825e
 
a42d6f7
31243f4
8f6825e
 
 
 
 
 
26e4907
8f6825e
 
26e4907
8f6825e
a42d6f7
26e4907
8f6825e
 
a42d6f7
51e7f46
8f6825e
 
 
 
 
51e7f46
31243f4
8f6825e
 
26e4907
8f6825e
 
26e4907
a42d6f7
26e4907
8f6825e
 
a42d6f7
31243f4
8f6825e
a42d6f7
26e4907
 
a42d6f7
 
 
8f6825e
 
e80aab9
8f6825e
e80aab9
8f6825e
a42d6f7
8f6825e
 
 
 
 
 
 
 
 
 
 
 
 
 
a42d6f7
7d65c66
8f6825e
26e4907
 
e80aab9
757ebd9
 
8f6825e
 
26e4907
8f6825e
26e4907
8f6825e
 
 
 
 
 
 
 
 
a42d6f7
8f6825e
a42d6f7
8f6825e
 
 
 
 
 
 
a42d6f7
8f6825e
 
 
 
 
a42d6f7
 
 
8f6825e
26e4907
a42d6f7
e80aab9
8f6825e
31243f4
8f6825e
e80aab9
 
 
8f6825e
a42d6f7
 
8f6825e
 
a42d6f7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
# app.py - Optimized for 16GB Memory
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.core.agent import ReActAgent
from llama_index.core.tools import FunctionTool
from transformers import AutoTokenizer
import os
import gradio as gr
import requests
import pandas as pd
import traceback
import torch
import re

# Import real tool dependencies
try:
    from duckduckgo_search import DDGS
except ImportError:
    print("Warning: duckduckgo_search not installed. Web search will be limited.")
    DDGS = None

try:
    from sympy import sympify, solve, simplify, N
    from sympy.core.sympify import SympifyError
except ImportError:
    print("Warning: sympy not installed. Math calculator will be limited.")
    sympify = None
    SympifyError = Exception

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Advanced Agent Definition ---
class SmartAgent:
    def __init__(self):
        print("Initializing Optimized LLM Agent for 16GB Memory...")
        
        # Check available memory and CUDA
        if torch.cuda.is_available():
            print(f"CUDA available. GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f}GB")
            device_map = "auto"
        else:
            print("CUDA not available, using CPU")
            device_map = "cpu"
        
        # Use a better model for 16GB - these are proven to work well
        model_options = [
            "microsoft/DialoGPT-medium",
            "google/flan-t5-large",  # Better reasoning capability
            "microsoft/DialoGPT-large",  # Good for conversation
        ]
        
        model_name = model_options[1]  # flan-t5-large for better reasoning
        print(f"Loading model: {model_name}")
        
        try:
            self.llm = HuggingFaceLLM(
                model_name=model_name,
                tokenizer_name=model_name,
                context_window=2048,  # Larger context for better understanding
                max_new_tokens=512,   # More tokens for detailed answers
                generate_kwargs={
                    "temperature": 0.1,   # Very low temperature for accuracy
                    "do_sample": True,
                    "top_p": 0.95,
                    "repetition_penalty": 1.2,
                    "pad_token_id": 0,  # Add explicit pad token
                },
                device_map=device_map,
                model_kwargs={
                    "torch_dtype": torch.float16,
                    "low_cpu_mem_usage": True,
                    "trust_remote_code": True,
                },
                # Better system message for instruction following
                system_message="""You are a precise AI assistant. When asked a question:
1. If it needs current information, use web_search tool
2. If it involves calculations, use math_calculator tool  
3. Provide direct, accurate answers
4. Always be specific and factual"""
            )
            print(f"Successfully loaded model: {model_name}")
            
        except Exception as e:
            print(f"Failed to load {model_name}: {e}")
            # Try smaller fallback
            fallback_model = "microsoft/DialoGPT-medium"
            print(f"Falling back to: {fallback_model}")
            self.llm = HuggingFaceLLM(
                model_name=fallback_model,
                tokenizer_name=fallback_model,
                context_window=1024,
                max_new_tokens=256,
                generate_kwargs={
                    "temperature": 0.1,
                    "do_sample": True,
                    "top_p": 0.9,
                    "repetition_penalty": 1.1,
                },
                device_map=device_map,
                model_kwargs={
                    "torch_dtype": torch.float16,
                    "low_cpu_mem_usage": True,
                }
            )
            print(f"Successfully loaded fallback model: {fallback_model}")
        
        # Define tools with improved implementations
        self.tools = [
            FunctionTool.from_defaults(
                fn=self.web_search,
                name="web_search",
                description="Search the web for current information, facts, or recent events. Use when you need up-to-date information."
            ),
            FunctionTool.from_defaults(
                fn=self.math_calculator,
                name="math_calculator",
                description="Perform mathematical calculations, solve equations, or evaluate mathematical expressions."
            )
        ]
        
        # Create ReAct agent with better settings
        try:
            self.agent = ReActAgent.from_tools(
                tools=self.tools,
                llm=self.llm,
                verbose=True,
                max_iterations=5,  # Allow more iterations for complex problems
                max_function_calls=10,  # Allow more tool calls
            )
            print("ReAct Agent initialized successfully.")
        except Exception as e:
            print(f"Error creating ReAct agent: {e}")
            self.agent = None

    def web_search(self, query: str) -> str:
        """Enhanced web search with better result formatting"""
        print(f"๐Ÿ” Web search: {query}")
        
        if not DDGS:
            return "Web search unavailable - duckduckgo_search not installed"
        
        try:
            with DDGS() as ddgs:
                results = list(ddgs.text(query, max_results=8, region='wt-wt'))
                
                if results:
                    # Format results more concisely for the LLM
                    formatted_results = []
                    for i, r in enumerate(results[:5], 1):  # Top 5 results
                        title = r.get('title', 'No title')
                        body = r.get('body', 'No description')
                        # Clean and truncate body
                        body = body.replace('\n', ' ').strip()[:200]
                        formatted_results.append(f"{i}. {title}: {body}")
                    
                    search_summary = f"Search results for '{query}':\n" + "\n".join(formatted_results)
                    print(f"โœ… Found {len(results)} results")
                    return search_summary
                else:
                    return f"No results found for '{query}'. Try different keywords."
                    
        except Exception as e:
            print(f"โŒ Web search error: {e}")
            return f"Search error for '{query}': {str(e)}"

    def math_calculator(self, expression: str) -> str:
        """Enhanced math calculator with better parsing"""
        print(f"๐Ÿงฎ Math calculation: {expression}")
        
        if not sympify:
            # Basic fallback
            try:
                # Clean expression
                clean_expr = expression.replace('^', '**').replace('ร—', '*').replace('รท', '/')
                result = eval(clean_expr)
                return f"Result: {result}"
            except Exception as e:
                return f"Math error: {str(e)}"
        
        try:
            # Clean and prepare expression
            clean_expr = expression.replace('^', '**').replace('ร—', '*').replace('รท', '/')
            
            # Try to evaluate
            result = sympify(clean_expr)
            
            # If it's an equation, try to solve it
            if '=' in expression:
                # Extract variable and solve
                parts = expression.split('=')
                if len(parts) == 2:
                    eq = sympify(f"Eq({parts[0]}, {parts[1]})")
                    solution = solve(eq)
                    return f"Solution: {solution}"
            
            # Evaluate numerically
            numerical_result = N(result, 10)  # 10 decimal places
            return f"Result: {numerical_result}"
            
        except Exception as e:
            print(f"โŒ Math error: {e}")
            return f"Could not calculate '{expression}': {str(e)}"

    def __call__(self, question: str) -> str:
        print(f"๐Ÿค” Processing: {question[:100]}...")
        
        # Enhanced question analysis
        question_lower = question.lower()
        
        # Better detection of search needs
        search_indicators = [
            'who is', 'what is', 'when did', 'where is', 'current', 'latest', 'recent',
            'today', 'news', 'winner', 'recipient', 'nationality', 'born in', 'died',
            'malko', 'competition', 'award', 'century', 'president', 'capital of',
            'population of', 'founded', 'established', 'discovery', 'invented'
        ]
        
        # Math detection
        math_indicators = [
            'calculate', 'compute', 'solve', 'equation', 'sum', 'total', 'average',
            'percentage', 'multiply', 'divide', 'add', 'subtract', '+', '-', '*', '/',
            '=', 'x=', 'y=', 'find x', 'find y'
        ]
        
        needs_search = any(indicator in question_lower for indicator in search_indicators)
        needs_math = any(indicator in question_lower for indicator in math_indicators)
        
        # Has numbers in question
        has_numbers = bool(re.search(r'\d', question))
        if has_numbers and any(op in question for op in ['+', '-', '*', '/', '=', '^']):
            needs_math = True
        
        try:
            if self.agent:
                # Use ReAct agent
                response = self.agent.query(question)
                response_str = str(response)
                
                # Check response quality
                if len(response_str.strip()) < 10 or any(bad in response_str.lower() for bad in ['error', 'sorry', 'cannot', "don't know"]):
                    print("โš ๏ธ Agent response seems poor, trying direct approach...")
                    return self._direct_approach(question, needs_search, needs_math)
                
                return response_str
            else:
                return self._direct_approach(question, needs_search, needs_math)
                
        except Exception as e:
            print(f"โŒ Agent error: {str(e)}")
            return self._direct_approach(question, needs_search, needs_math)
    
    def _direct_approach(self, question: str, needs_search: bool, needs_math: bool) -> str:
        """Direct tool usage when agent fails"""
        
        if needs_search:
            # Extract better search terms
            important_words = []
            words = question.replace('?', '').split()
            
            skip_words = {'what', 'when', 'where', 'who', 'how', 'is', 'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by'}
            
            for word in words:
                clean_word = word.lower().strip('.,!?;:')
                if len(clean_word) > 2 and clean_word not in skip_words:
                    important_words.append(clean_word)
            
            # Take up to 4 most important terms
            search_query = ' '.join(important_words[:4])
            
            if search_query:
                result = self.web_search(search_query)
                return f"Based on web search:\n\n{result}"
        
        if needs_math:
            # Extract mathematical expressions
            math_expressions = re.findall(r'[\d+\-*/().\s=x]+', question)
            for expr in math_expressions:
                if any(op in expr for op in ['+', '-', '*', '/', '=']):
                    result = self.math_calculator(expr.strip())
                    return f"Mathematical calculation:\n{result}"
        
        # Fallback: try to give a reasonable response
        return f"I need more specific information to answer: {question[:100]}... Please provide additional context or rephrase your question."


def cleanup_memory():
    """Clean up GPU memory"""
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        print("๐Ÿงน GPU memory cleared")


def run_and_submit_all(profile: gr.OAuthProfile | None):
    """Enhanced submission with better error handling"""
    space_id = os.getenv("SPACE_ID")

    if not profile:
        return "โŒ Please Login to Hugging Face first.", None

    username = f"{profile.username}"
    print(f"๐Ÿ‘ค User: {username}")

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    cleanup_memory()

    # Initialize agent
    try:
        agent = SmartAgent()
    except Exception as e:
        print(f"โŒ Agent initialization failed: {e}")
        return f"Failed to initialize agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"

    # Fetch questions
    try:
        response = requests.get(questions_url, timeout=30)
        response.raise_for_status()
        questions_data = response.json()
        print(f"๐Ÿ“‹ Fetched {len(questions_data)} questions")
    except Exception as e:
        return f"โŒ Error fetching questions: {e}", None

    # Process questions with better tracking
    results_log = []
    answers_payload = []
    
    for i, item in enumerate(questions_data, 1):
        task_id = item.get("task_id")
        question_text = item.get("question")
        
        if not task_id or not question_text:
            continue
            
        print(f"\n๐Ÿ”„ Question {i}/{len(questions_data)}: {task_id}")
        print(f"Q: {question_text[:150]}...")
        
        try:
            answer = agent(question_text)
            
            # Ensure answer is not empty or generic
            if not answer or len(answer.strip()) < 3:
                answer = f"Unable to process question: {question_text[:50]}..."
            
            answers_payload.append({
                "task_id": task_id, 
                "submitted_answer": answer
            })
            
            results_log.append({
                "Task ID": task_id,
                "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
                "Answer": answer[:150] + "..." if len(answer) > 150 else answer
            })
            
            print(f"โœ… A: {answer[:100]}...")
            
            # Memory cleanup every 3 questions
            if i % 3 == 0:
                cleanup_memory()
                
        except Exception as e:
            print(f"โŒ Error on {task_id}: {e}")
            error_answer = f"Processing error: {str(e)[:100]}"
            answers_payload.append({
                "task_id": task_id, 
                "submitted_answer": error_answer
            })
            results_log.append({
                "Task ID": task_id,
                "Question": question_text[:100] + "...",
                "Answer": error_answer
            })

    # Submit answers
    submission_data = {
        "username": username.strip(),
        "agent_code": agent_code,
        "answers": answers_payload
    }
    
    print(f"\n๐Ÿ“ค Submitting {len(answers_payload)} answers...")
    
    try:
        response = requests.post(submit_url, json=submission_data, timeout=120)
        response.raise_for_status()
        result_data = response.json()
        
        score = result_data.get('score', 0)
        correct = result_data.get('correct_count', 0)
        total = result_data.get('total_attempted', len(answers_payload))
        
        final_status = f"""๐ŸŽ‰ Submission Complete!

๐Ÿ‘ค User: {result_data.get('username')}
๐Ÿ“Š Score: {score}% ({correct}/{total} correct)
๐Ÿ’ฌ {result_data.get('message', 'No message')}

Target: 30%+ โœ“ {'ACHIEVED!' if score >= 30 else 'Need improvement'}"""
        
        print(f"โœ… Final Score: {score}%")
        return final_status, pd.DataFrame(results_log)
        
    except Exception as e:
        error_msg = f"โŒ Submission failed: {str(e)}"
        print(error_msg)
        return error_msg, pd.DataFrame(results_log)


# --- Gradio UI ---
with gr.Blocks(title="Optimized Agent Evaluation", theme=gr.themes.Soft()) as demo:
    gr.Markdown("# ๐Ÿš€ Optimized Agent for 16GB Memory")
    gr.Markdown("""
    **Target: 30%+ Score**
    
    **Optimizations:**
    - ๐Ÿง  Better model selection (flan-t5-large)
    - ๐Ÿ” Enhanced web search with DuckDuckGo
    - ๐Ÿงฎ Advanced math calculator with SymPy
    - ๐ŸŽฏ Improved question analysis and routing
    - ๐Ÿ’พ Memory management for 16GB systems
    - ๐Ÿ”ง Robust error handling and fallbacks
    """)

    with gr.Row():
        gr.LoginButton(scale=1)
    
    with gr.Row():
        run_button = gr.Button(
            "๐Ÿš€ Run Optimized Evaluation", 
            variant="primary", 
            size="lg",
            scale=2
        )
    
    status_output = gr.Textbox(
        label="๐Ÿ“Š Status & Results", 
        lines=10, 
        interactive=False,
        placeholder="Ready to run evaluation..."
    )
    
    results_table = gr.DataFrame(
        label="๐Ÿ“ Detailed Results", 
        wrap=True
    )

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("๐Ÿš€ Starting Optimized Agent for 16GB Memory...")
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True
    )