Spaces:
Runtime error
Runtime error
File size: 17,282 Bytes
8f6825e ca2b63a 8f6825e 574b6ca a42d6f7 51e7f46 26e4907 10e9b7d a42d6f7 8f6825e a42d6f7 757ebd9 e80aab9 3db6293 e80aab9 ca2b63a 31243f4 8f6825e a42d6f7 8f6825e 51e7f46 8f6825e 51e7f46 8f6825e 51e7f46 8f6825e a42d6f7 8f6825e ca2b63a 8f6825e ca2b63a 8f6825e ca2b63a 8f6825e ca2b63a 8f6825e ca2b63a a42d6f7 8f6825e 51e7f46 8f6825e 51e7f46 8f6825e 51e7f46 8f6825e 51e7f46 ca2b63a 8f6825e a42d6f7 8f6825e a42d6f7 757ebd9 8f6825e 26e4907 8f6825e c549c70 8f6825e 26e4907 757ebd9 8f6825e ca2b63a 8f6825e 26e4907 8f6825e 26e4907 8f6825e ca2b63a 8f6825e c549c70 8f6825e c549c70 8f6825e c549c70 8f6825e c549c70 8f6825e c549c70 8f6825e 26e4907 8f6825e c549c70 8f6825e 51e7f46 ca2b63a 8f6825e 26e4907 8f6825e c549c70 8f6825e c549c70 8f6825e 26e4907 8f6825e 26e4907 8f6825e 26e4907 757ebd9 8f6825e 51e7f46 ca2b63a 8f6825e 757ebd9 3c4371f 8f6825e 3c4371f 7e4a06b 31243f4 e80aab9 8f6825e 31243f4 757ebd9 31243f4 8f6825e 757ebd9 36ed51a 3c4371f 8f6825e eccf8e4 8f6825e 7d65c66 31243f4 8f6825e 7d65c66 8f6825e e80aab9 8f6825e 7d65c66 a42d6f7 31243f4 8f6825e a42d6f7 8f6825e 31243f4 a42d6f7 8f6825e a42d6f7 31243f4 8f6825e 26e4907 8f6825e 26e4907 8f6825e a42d6f7 26e4907 8f6825e a42d6f7 51e7f46 8f6825e 51e7f46 31243f4 8f6825e 26e4907 8f6825e 26e4907 a42d6f7 26e4907 8f6825e a42d6f7 31243f4 8f6825e a42d6f7 26e4907 a42d6f7 8f6825e e80aab9 8f6825e e80aab9 8f6825e a42d6f7 8f6825e a42d6f7 7d65c66 8f6825e 26e4907 e80aab9 757ebd9 8f6825e 26e4907 8f6825e 26e4907 8f6825e a42d6f7 8f6825e a42d6f7 8f6825e a42d6f7 8f6825e a42d6f7 8f6825e 26e4907 a42d6f7 e80aab9 8f6825e 31243f4 8f6825e e80aab9 8f6825e a42d6f7 8f6825e a42d6f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
# app.py - Optimized for 16GB Memory
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.core.agent import ReActAgent
from llama_index.core.tools import FunctionTool
from transformers import AutoTokenizer
import os
import gradio as gr
import requests
import pandas as pd
import traceback
import torch
import re
# Import real tool dependencies
try:
from duckduckgo_search import DDGS
except ImportError:
print("Warning: duckduckgo_search not installed. Web search will be limited.")
DDGS = None
try:
from sympy import sympify, solve, simplify, N
from sympy.core.sympify import SympifyError
except ImportError:
print("Warning: sympy not installed. Math calculator will be limited.")
sympify = None
SympifyError = Exception
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Advanced Agent Definition ---
class SmartAgent:
def __init__(self):
print("Initializing Optimized LLM Agent for 16GB Memory...")
# Check available memory and CUDA
if torch.cuda.is_available():
print(f"CUDA available. GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f}GB")
device_map = "auto"
else:
print("CUDA not available, using CPU")
device_map = "cpu"
# Use a better model for 16GB - these are proven to work well
model_options = [
"microsoft/DialoGPT-medium",
"google/flan-t5-large", # Better reasoning capability
"microsoft/DialoGPT-large", # Good for conversation
]
model_name = model_options[1] # flan-t5-large for better reasoning
print(f"Loading model: {model_name}")
try:
self.llm = HuggingFaceLLM(
model_name=model_name,
tokenizer_name=model_name,
context_window=2048, # Larger context for better understanding
max_new_tokens=512, # More tokens for detailed answers
generate_kwargs={
"temperature": 0.1, # Very low temperature for accuracy
"do_sample": True,
"top_p": 0.95,
"repetition_penalty": 1.2,
"pad_token_id": 0, # Add explicit pad token
},
device_map=device_map,
model_kwargs={
"torch_dtype": torch.float16,
"low_cpu_mem_usage": True,
"trust_remote_code": True,
},
# Better system message for instruction following
system_message="""You are a precise AI assistant. When asked a question:
1. If it needs current information, use web_search tool
2. If it involves calculations, use math_calculator tool
3. Provide direct, accurate answers
4. Always be specific and factual"""
)
print(f"Successfully loaded model: {model_name}")
except Exception as e:
print(f"Failed to load {model_name}: {e}")
# Try smaller fallback
fallback_model = "microsoft/DialoGPT-medium"
print(f"Falling back to: {fallback_model}")
self.llm = HuggingFaceLLM(
model_name=fallback_model,
tokenizer_name=fallback_model,
context_window=1024,
max_new_tokens=256,
generate_kwargs={
"temperature": 0.1,
"do_sample": True,
"top_p": 0.9,
"repetition_penalty": 1.1,
},
device_map=device_map,
model_kwargs={
"torch_dtype": torch.float16,
"low_cpu_mem_usage": True,
}
)
print(f"Successfully loaded fallback model: {fallback_model}")
# Define tools with improved implementations
self.tools = [
FunctionTool.from_defaults(
fn=self.web_search,
name="web_search",
description="Search the web for current information, facts, or recent events. Use when you need up-to-date information."
),
FunctionTool.from_defaults(
fn=self.math_calculator,
name="math_calculator",
description="Perform mathematical calculations, solve equations, or evaluate mathematical expressions."
)
]
# Create ReAct agent with better settings
try:
self.agent = ReActAgent.from_tools(
tools=self.tools,
llm=self.llm,
verbose=True,
max_iterations=5, # Allow more iterations for complex problems
max_function_calls=10, # Allow more tool calls
)
print("ReAct Agent initialized successfully.")
except Exception as e:
print(f"Error creating ReAct agent: {e}")
self.agent = None
def web_search(self, query: str) -> str:
"""Enhanced web search with better result formatting"""
print(f"๐ Web search: {query}")
if not DDGS:
return "Web search unavailable - duckduckgo_search not installed"
try:
with DDGS() as ddgs:
results = list(ddgs.text(query, max_results=8, region='wt-wt'))
if results:
# Format results more concisely for the LLM
formatted_results = []
for i, r in enumerate(results[:5], 1): # Top 5 results
title = r.get('title', 'No title')
body = r.get('body', 'No description')
# Clean and truncate body
body = body.replace('\n', ' ').strip()[:200]
formatted_results.append(f"{i}. {title}: {body}")
search_summary = f"Search results for '{query}':\n" + "\n".join(formatted_results)
print(f"โ
Found {len(results)} results")
return search_summary
else:
return f"No results found for '{query}'. Try different keywords."
except Exception as e:
print(f"โ Web search error: {e}")
return f"Search error for '{query}': {str(e)}"
def math_calculator(self, expression: str) -> str:
"""Enhanced math calculator with better parsing"""
print(f"๐งฎ Math calculation: {expression}")
if not sympify:
# Basic fallback
try:
# Clean expression
clean_expr = expression.replace('^', '**').replace('ร', '*').replace('รท', '/')
result = eval(clean_expr)
return f"Result: {result}"
except Exception as e:
return f"Math error: {str(e)}"
try:
# Clean and prepare expression
clean_expr = expression.replace('^', '**').replace('ร', '*').replace('รท', '/')
# Try to evaluate
result = sympify(clean_expr)
# If it's an equation, try to solve it
if '=' in expression:
# Extract variable and solve
parts = expression.split('=')
if len(parts) == 2:
eq = sympify(f"Eq({parts[0]}, {parts[1]})")
solution = solve(eq)
return f"Solution: {solution}"
# Evaluate numerically
numerical_result = N(result, 10) # 10 decimal places
return f"Result: {numerical_result}"
except Exception as e:
print(f"โ Math error: {e}")
return f"Could not calculate '{expression}': {str(e)}"
def __call__(self, question: str) -> str:
print(f"๐ค Processing: {question[:100]}...")
# Enhanced question analysis
question_lower = question.lower()
# Better detection of search needs
search_indicators = [
'who is', 'what is', 'when did', 'where is', 'current', 'latest', 'recent',
'today', 'news', 'winner', 'recipient', 'nationality', 'born in', 'died',
'malko', 'competition', 'award', 'century', 'president', 'capital of',
'population of', 'founded', 'established', 'discovery', 'invented'
]
# Math detection
math_indicators = [
'calculate', 'compute', 'solve', 'equation', 'sum', 'total', 'average',
'percentage', 'multiply', 'divide', 'add', 'subtract', '+', '-', '*', '/',
'=', 'x=', 'y=', 'find x', 'find y'
]
needs_search = any(indicator in question_lower for indicator in search_indicators)
needs_math = any(indicator in question_lower for indicator in math_indicators)
# Has numbers in question
has_numbers = bool(re.search(r'\d', question))
if has_numbers and any(op in question for op in ['+', '-', '*', '/', '=', '^']):
needs_math = True
try:
if self.agent:
# Use ReAct agent
response = self.agent.query(question)
response_str = str(response)
# Check response quality
if len(response_str.strip()) < 10 or any(bad in response_str.lower() for bad in ['error', 'sorry', 'cannot', "don't know"]):
print("โ ๏ธ Agent response seems poor, trying direct approach...")
return self._direct_approach(question, needs_search, needs_math)
return response_str
else:
return self._direct_approach(question, needs_search, needs_math)
except Exception as e:
print(f"โ Agent error: {str(e)}")
return self._direct_approach(question, needs_search, needs_math)
def _direct_approach(self, question: str, needs_search: bool, needs_math: bool) -> str:
"""Direct tool usage when agent fails"""
if needs_search:
# Extract better search terms
important_words = []
words = question.replace('?', '').split()
skip_words = {'what', 'when', 'where', 'who', 'how', 'is', 'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by'}
for word in words:
clean_word = word.lower().strip('.,!?;:')
if len(clean_word) > 2 and clean_word not in skip_words:
important_words.append(clean_word)
# Take up to 4 most important terms
search_query = ' '.join(important_words[:4])
if search_query:
result = self.web_search(search_query)
return f"Based on web search:\n\n{result}"
if needs_math:
# Extract mathematical expressions
math_expressions = re.findall(r'[\d+\-*/().\s=x]+', question)
for expr in math_expressions:
if any(op in expr for op in ['+', '-', '*', '/', '=']):
result = self.math_calculator(expr.strip())
return f"Mathematical calculation:\n{result}"
# Fallback: try to give a reasonable response
return f"I need more specific information to answer: {question[:100]}... Please provide additional context or rephrase your question."
def cleanup_memory():
"""Clean up GPU memory"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("๐งน GPU memory cleared")
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""Enhanced submission with better error handling"""
space_id = os.getenv("SPACE_ID")
if not profile:
return "โ Please Login to Hugging Face first.", None
username = f"{profile.username}"
print(f"๐ค User: {username}")
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
cleanup_memory()
# Initialize agent
try:
agent = SmartAgent()
except Exception as e:
print(f"โ Agent initialization failed: {e}")
return f"Failed to initialize agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
# Fetch questions
try:
response = requests.get(questions_url, timeout=30)
response.raise_for_status()
questions_data = response.json()
print(f"๐ Fetched {len(questions_data)} questions")
except Exception as e:
return f"โ Error fetching questions: {e}", None
# Process questions with better tracking
results_log = []
answers_payload = []
for i, item in enumerate(questions_data, 1):
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or not question_text:
continue
print(f"\n๐ Question {i}/{len(questions_data)}: {task_id}")
print(f"Q: {question_text[:150]}...")
try:
answer = agent(question_text)
# Ensure answer is not empty or generic
if not answer or len(answer.strip()) < 3:
answer = f"Unable to process question: {question_text[:50]}..."
answers_payload.append({
"task_id": task_id,
"submitted_answer": answer
})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Answer": answer[:150] + "..." if len(answer) > 150 else answer
})
print(f"โ
A: {answer[:100]}...")
# Memory cleanup every 3 questions
if i % 3 == 0:
cleanup_memory()
except Exception as e:
print(f"โ Error on {task_id}: {e}")
error_answer = f"Processing error: {str(e)[:100]}"
answers_payload.append({
"task_id": task_id,
"submitted_answer": error_answer
})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "...",
"Answer": error_answer
})
# Submit answers
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
print(f"\n๐ค Submitting {len(answers_payload)} answers...")
try:
response = requests.post(submit_url, json=submission_data, timeout=120)
response.raise_for_status()
result_data = response.json()
score = result_data.get('score', 0)
correct = result_data.get('correct_count', 0)
total = result_data.get('total_attempted', len(answers_payload))
final_status = f"""๐ Submission Complete!
๐ค User: {result_data.get('username')}
๐ Score: {score}% ({correct}/{total} correct)
๐ฌ {result_data.get('message', 'No message')}
Target: 30%+ โ {'ACHIEVED!' if score >= 30 else 'Need improvement'}"""
print(f"โ
Final Score: {score}%")
return final_status, pd.DataFrame(results_log)
except Exception as e:
error_msg = f"โ Submission failed: {str(e)}"
print(error_msg)
return error_msg, pd.DataFrame(results_log)
# --- Gradio UI ---
with gr.Blocks(title="Optimized Agent Evaluation", theme=gr.themes.Soft()) as demo:
gr.Markdown("# ๐ Optimized Agent for 16GB Memory")
gr.Markdown("""
**Target: 30%+ Score**
**Optimizations:**
- ๐ง Better model selection (flan-t5-large)
- ๐ Enhanced web search with DuckDuckGo
- ๐งฎ Advanced math calculator with SymPy
- ๐ฏ Improved question analysis and routing
- ๐พ Memory management for 16GB systems
- ๐ง Robust error handling and fallbacks
""")
with gr.Row():
gr.LoginButton(scale=1)
with gr.Row():
run_button = gr.Button(
"๐ Run Optimized Evaluation",
variant="primary",
size="lg",
scale=2
)
status_output = gr.Textbox(
label="๐ Status & Results",
lines=10,
interactive=False,
placeholder="Ready to run evaluation..."
)
results_table = gr.DataFrame(
label="๐ Detailed Results",
wrap=True
)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("๐ Starting Optimized Agent for 16GB Memory...")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True
) |