Spaces:
Runtime error
Runtime error
Initial commit with LlamaIndex-based agent
Browse files
app.py
CHANGED
@@ -1,14 +1,17 @@
|
|
1 |
-
# app.py
|
2 |
from llama_index.llms.huggingface import HuggingFaceLLM
|
3 |
from llama_index.core.agent import ReActAgent
|
4 |
from llama_index.core.tools import FunctionTool
|
5 |
-
from transformers import AutoTokenizer
|
6 |
import os
|
7 |
import gradio as gr
|
8 |
import requests
|
9 |
import pandas as pd
|
10 |
import traceback
|
11 |
import torch
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Import real tool dependencies
|
14 |
try:
|
@@ -27,262 +30,317 @@ except ImportError:
|
|
27 |
|
28 |
# --- Constants ---
|
29 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
30 |
|
31 |
# --- Advanced Agent Definition ---
|
32 |
class SmartAgent:
|
33 |
def __init__(self):
|
34 |
-
print("Initializing Local LLM Agent...")
|
|
|
35 |
|
36 |
-
#
|
37 |
-
if torch.cuda.is_available():
|
38 |
-
print(f"CUDA available. GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f}GB")
|
39 |
-
else:
|
40 |
-
print("CUDA not available, using CPU")
|
41 |
-
|
42 |
-
# Use a smaller, more efficient model for Hugging Face Spaces
|
43 |
model_options = [
|
44 |
-
"
|
45 |
-
"google/flan-t5-base",
|
46 |
-
"
|
47 |
-
"HuggingFaceH4/zephyr-7b-beta" # Original (may fail in limited memory)
|
48 |
]
|
49 |
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
self.llm = HuggingFaceLLM(
|
56 |
-
model_name=model_name,
|
57 |
-
tokenizer_name=model_name,
|
58 |
-
context_window=1024, # Increased for better reasoning
|
59 |
-
max_new_tokens=256, # Increased for better responses
|
60 |
-
generate_kwargs={
|
61 |
-
"temperature": 0.3, # Lower temperature for more focused responses
|
62 |
-
"do_sample": True,
|
63 |
-
"top_p": 0.9,
|
64 |
-
"repetition_penalty": 1.1
|
65 |
-
},
|
66 |
-
device_map="auto",
|
67 |
-
# Add memory optimization parameters
|
68 |
-
model_kwargs={
|
69 |
-
"torch_dtype": torch.float16, # Use half precision
|
70 |
-
"low_cpu_mem_usage": True,
|
71 |
-
"load_in_8bit": True, # Enable 8-bit quantization if available
|
72 |
-
},
|
73 |
-
# Add system message for better instruction following
|
74 |
-
system_message="You are a helpful AI assistant that can search the web and perform calculations. Always provide detailed, accurate answers."
|
75 |
-
)
|
76 |
-
print(f"Successfully loaded model: {model_name}")
|
77 |
-
|
78 |
-
except Exception as e:
|
79 |
-
print(f"Failed to load {model_name}: {e}")
|
80 |
-
# Fallback to an even smaller model
|
81 |
-
try:
|
82 |
-
fallback_model = "microsoft/DialoGPT-small"
|
83 |
-
print(f"Falling back to: {fallback_model}")
|
84 |
-
self.llm = HuggingFaceLLM(
|
85 |
-
model_name=fallback_model,
|
86 |
-
tokenizer_name=fallback_model,
|
87 |
-
context_window=256,
|
88 |
-
max_new_tokens=64,
|
89 |
-
generate_kwargs={"temperature": 0.7, "do_sample": True},
|
90 |
-
device_map="cpu", # Force CPU to avoid memory issues
|
91 |
-
model_kwargs={"low_cpu_mem_usage": True}
|
92 |
-
)
|
93 |
-
print(f"Successfully loaded fallback model: {fallback_model}")
|
94 |
-
except Exception as e2:
|
95 |
-
print(f"Flan-T5 also failed: {e2}")
|
96 |
-
# Try an even more basic approach with a very small model
|
97 |
-
try:
|
98 |
-
basic_model = "microsoft/DialoGPT-small"
|
99 |
-
print(f"Final fallback to: {basic_model}")
|
100 |
-
self.llm = HuggingFaceLLM(
|
101 |
-
model_name=basic_model,
|
102 |
-
tokenizer_name=basic_model,
|
103 |
-
context_window=512,
|
104 |
-
max_new_tokens=128,
|
105 |
-
generate_kwargs={"temperature": 0.3, "do_sample": True},
|
106 |
-
device_map="cpu", # Force CPU to avoid memory issues
|
107 |
-
model_kwargs={"low_cpu_mem_usage": True}
|
108 |
-
)
|
109 |
-
print(f"Successfully loaded final fallback: {basic_model}")
|
110 |
-
except Exception as e3:
|
111 |
-
print(f"All model loading attempts failed: {e3}")
|
112 |
-
raise Exception("Unable to load any language model")
|
113 |
|
114 |
-
#
|
115 |
self.tools = [
|
116 |
FunctionTool.from_defaults(
|
117 |
-
fn=self.
|
118 |
name="web_search",
|
119 |
-
description="Searches the web for current information
|
120 |
),
|
121 |
FunctionTool.from_defaults(
|
122 |
-
fn=self.
|
123 |
name="math_calculator",
|
124 |
-
description="
|
125 |
)
|
126 |
]
|
127 |
|
128 |
-
#
|
129 |
try:
|
130 |
self.agent = ReActAgent.from_tools(
|
131 |
tools=self.tools,
|
132 |
llm=self.llm,
|
133 |
verbose=True,
|
134 |
-
max_iterations=
|
|
|
|
|
|
|
|
|
135 |
)
|
136 |
-
print("
|
137 |
except Exception as e:
|
138 |
-
print(f"
|
139 |
-
# Create a simple fallback agent
|
140 |
self.agent = None
|
141 |
-
print("Using fallback direct tool calling approach")
|
142 |
|
143 |
-
def
|
144 |
-
"""
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
if not DDGS:
|
148 |
-
return "Web search unavailable
|
149 |
|
150 |
try:
|
151 |
with DDGS() as ddgs:
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
|
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
except Exception as e:
|
165 |
-
|
166 |
-
return f"Error during web search for '{query}': {str(e)}"
|
167 |
|
168 |
-
def
|
169 |
-
"""
|
170 |
-
|
|
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
if not all(c in allowed_chars for c in expression.replace(' ', '')):
|
178 |
-
return "Error: Only basic math operations are allowed"
|
179 |
-
result = eval(expression.replace('^', '**'))
|
180 |
-
return str(result)
|
181 |
-
except Exception as e:
|
182 |
-
return f"Error: Could not evaluate the mathematical expression - {str(e)}"
|
183 |
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
|
|
|
|
|
|
|
|
192 |
|
193 |
-
def
|
194 |
-
|
|
|
195 |
|
196 |
-
#
|
197 |
-
|
198 |
|
199 |
-
#
|
200 |
-
|
201 |
-
|
|
|
|
|
|
|
|
|
202 |
|
203 |
-
#
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
'malko', 'century', 'award', 'born', 'died'
|
208 |
-
])
|
209 |
|
210 |
-
#
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
]) or any(char in question for char in '+-*/=()0123456789')
|
215 |
|
216 |
try:
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
return
|
226 |
-
|
227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
else:
|
229 |
-
|
230 |
-
return self._direct_tool_approach(question, needs_web_search, needs_calculation)
|
231 |
|
232 |
except Exception as e:
|
233 |
-
print(f"
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
|
|
|
|
|
|
243 |
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
|
252 |
-
|
253 |
-
|
254 |
|
255 |
-
|
256 |
-
|
|
|
|
|
|
|
257 |
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
return f"Mathematical calculation result: {result}"
|
267 |
|
268 |
-
#
|
269 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
print("GPU memory cleared")
|
278 |
|
279 |
|
280 |
# --- Submission Logic ---
|
281 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
282 |
-
"""
|
283 |
-
Fetches all questions, runs the agent on them, submits all answers,
|
284 |
-
and displays the results.
|
285 |
-
"""
|
286 |
space_id = os.getenv("SPACE_ID")
|
287 |
|
288 |
if profile:
|
@@ -296,15 +354,11 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
296 |
questions_url = f"{api_url}/questions"
|
297 |
submit_url = f"{api_url}/submit"
|
298 |
|
299 |
-
#
|
300 |
-
cleanup_memory()
|
301 |
-
|
302 |
-
# Instantiate Agent
|
303 |
try:
|
304 |
agent = SmartAgent()
|
305 |
except Exception as e:
|
306 |
-
print(f"
|
307 |
-
print(f"Full traceback: {traceback.format_exc()}")
|
308 |
return f"Error initializing agent: {e}", None
|
309 |
|
310 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
@@ -317,197 +371,119 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
317 |
response.raise_for_status()
|
318 |
questions_data = response.json()
|
319 |
if not questions_data:
|
320 |
-
|
321 |
-
return "Fetched questions list is empty or invalid format.", None
|
322 |
print(f"Fetched {len(questions_data)} questions.")
|
323 |
-
except requests.exceptions.RequestException as e:
|
324 |
-
print(f"Error fetching questions: {e}")
|
325 |
-
return f"Error fetching questions: {e}", None
|
326 |
-
except requests.exceptions.JSONDecodeError as e:
|
327 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
328 |
-
return f"Error decoding server response for questions: {e}", None
|
329 |
except Exception as e:
|
330 |
-
|
331 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
332 |
|
333 |
-
#
|
334 |
results_log = []
|
335 |
answers_payload = []
|
336 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
337 |
|
338 |
for i, item in enumerate(questions_data, 1):
|
339 |
task_id = item.get("task_id")
|
340 |
-
|
341 |
|
342 |
-
if not task_id or
|
343 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
344 |
continue
|
345 |
|
346 |
-
print(f"Processing question {i}/{len(questions_data)}: {task_id}")
|
347 |
|
348 |
try:
|
349 |
-
|
350 |
-
answers_payload.append({
|
|
|
|
|
|
|
351 |
results_log.append({
|
352 |
-
"Task ID": task_id,
|
353 |
-
"Question":
|
354 |
-
"
|
355 |
})
|
356 |
-
print(f"✅ Completed question {i}: {task_id}")
|
357 |
|
358 |
-
# Clean memory
|
359 |
-
if i % 5 == 0:
|
360 |
-
cleanup_memory()
|
361 |
|
362 |
except Exception as e:
|
363 |
-
print(f"
|
364 |
-
|
365 |
-
|
|
|
|
|
366 |
results_log.append({
|
367 |
-
"Task ID": task_id,
|
368 |
-
"Question":
|
369 |
-
"
|
370 |
})
|
371 |
|
372 |
-
|
373 |
-
print("Agent did not produce any answers to submit.")
|
374 |
-
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
375 |
-
|
376 |
-
# Prepare submission
|
377 |
submission_data = {
|
378 |
-
"username": username.strip(),
|
379 |
-
"agent_code": agent_code,
|
380 |
"answers": answers_payload
|
381 |
}
|
382 |
|
383 |
-
|
384 |
-
print(status_update)
|
385 |
-
|
386 |
-
# Submit answers
|
387 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
388 |
try:
|
389 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
390 |
response.raise_for_status()
|
391 |
-
|
392 |
|
393 |
-
|
394 |
-
f"
|
395 |
-
f"User: {
|
396 |
-
f"
|
397 |
-
f"({
|
398 |
-
f"Message: {
|
399 |
)
|
400 |
-
|
401 |
-
results_df = pd.DataFrame(results_log)
|
402 |
-
return final_status, results_df
|
403 |
-
|
404 |
-
except requests.exceptions.HTTPError as e:
|
405 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
406 |
-
try:
|
407 |
-
error_json = e.response.json()
|
408 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
409 |
-
except requests.exceptions.JSONDecodeError:
|
410 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
411 |
-
status_message = f"❌ Submission Failed: {error_detail}"
|
412 |
-
print(status_message)
|
413 |
-
results_df = pd.DataFrame(results_log)
|
414 |
-
return status_message, results_df
|
415 |
-
|
416 |
-
except requests.exceptions.Timeout:
|
417 |
-
status_message = "❌ Submission Failed: The request timed out."
|
418 |
-
print(status_message)
|
419 |
-
results_df = pd.DataFrame(results_log)
|
420 |
-
return status_message, results_df
|
421 |
-
|
422 |
-
except requests.exceptions.RequestException as e:
|
423 |
-
status_message = f"❌ Submission Failed: Network error - {e}"
|
424 |
-
print(status_message)
|
425 |
-
results_df = pd.DataFrame(results_log)
|
426 |
-
return status_message, results_df
|
427 |
|
428 |
except Exception as e:
|
429 |
-
|
430 |
-
print(
|
431 |
-
|
432 |
-
return status_message, results_df
|
433 |
|
434 |
|
435 |
# --- Gradio UI ---
|
436 |
with gr.Blocks(title="Local LLM Agent Evaluation") as demo:
|
437 |
-
gr.Markdown("
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
2. 🚀 Click 'Run Evaluation & Submit All Answers'
|
443 |
-
3. ⏳ Wait for the local LLM to process all questions (using memory-optimized smaller model)
|
444 |
-
4. 📊 View your results and submission status
|
445 |
-
|
446 |
-
**Features:**
|
447 |
-
- 🔍 Real web search using DuckDuckGo
|
448 |
-
- 🧮 Advanced math calculations with SymPy
|
449 |
-
- 🧠 Memory-optimized language model with fallback options
|
450 |
-
- 🛡️ Error handling and recovery mechanisms
|
451 |
-
"""
|
452 |
-
)
|
453 |
-
|
454 |
with gr.Row():
|
455 |
gr.LoginButton()
|
456 |
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
size="lg"
|
462 |
-
)
|
463 |
|
464 |
-
|
465 |
-
label="📋
|
466 |
-
|
467 |
-
interactive=False,
|
468 |
-
placeholder="Click the button above to start the evaluation..."
|
469 |
)
|
470 |
|
471 |
results_table = gr.DataFrame(
|
472 |
-
label="📊
|
473 |
-
|
474 |
-
|
475 |
)
|
476 |
|
477 |
-
|
478 |
-
run_button.click(
|
479 |
fn=run_and_submit_all,
|
480 |
-
outputs=[
|
481 |
)
|
482 |
|
483 |
|
484 |
if __name__ == "__main__":
|
485 |
print("\n" + "="*60)
|
486 |
-
print("🚀
|
|
|
487 |
print("="*60)
|
488 |
|
489 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
490 |
-
space_id_startup = os.getenv("SPACE_ID")
|
491 |
-
|
492 |
-
if space_host_startup:
|
493 |
-
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
494 |
-
print(f" Runtime URL should be: https://{space_host_startup}")
|
495 |
-
else:
|
496 |
-
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
497 |
-
|
498 |
-
if space_id_startup:
|
499 |
-
print(f"✅ SPACE_ID found: {space_id_startup}")
|
500 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
501 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
502 |
-
else:
|
503 |
-
print("ℹ️ SPACE_ID environment variable not found (running locally?).")
|
504 |
-
|
505 |
-
print("-" * 60)
|
506 |
-
print("🎯 Launching Gradio Interface for Local LLM Agent Evaluation...")
|
507 |
-
|
508 |
-
# Launch without share=True for Hugging Face Spaces
|
509 |
demo.launch(
|
510 |
server_name="0.0.0.0",
|
511 |
-
server_port=7860
|
512 |
-
show_error=True
|
513 |
)
|
|
|
|
|
1 |
from llama_index.llms.huggingface import HuggingFaceLLM
|
2 |
from llama_index.core.agent import ReActAgent
|
3 |
from llama_index.core.tools import FunctionTool
|
4 |
+
from transformers import AutoTokenizer, pipeline
|
5 |
import os
|
6 |
import gradio as gr
|
7 |
import requests
|
8 |
import pandas as pd
|
9 |
import traceback
|
10 |
import torch
|
11 |
+
import re
|
12 |
+
import gc
|
13 |
+
from typing import List, Dict
|
14 |
+
from datetime import datetime
|
15 |
|
16 |
# Import real tool dependencies
|
17 |
try:
|
|
|
30 |
|
31 |
# --- Constants ---
|
32 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
33 |
+
MEMORY_LIMIT_GB = 16 # Your system's memory limit
|
34 |
|
35 |
# --- Advanced Agent Definition ---
|
36 |
class SmartAgent:
|
37 |
def __init__(self):
|
38 |
+
print(f"Initializing Local LLM Agent (Memory Limit: {MEMORY_LIMIT_GB}GB)...")
|
39 |
+
self.model_loaded = False
|
40 |
|
41 |
+
# Model options sorted by capability (name, approx size in GB, quantization)
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
model_options = [
|
43 |
+
("google/flan-t5-large", 3, "8-bit"), # Best balance for 16GB
|
44 |
+
("google/flan-t5-base", 1, "8-bit"), # Smaller fallback
|
45 |
+
("facebook/opt-1.3b", 2.5, "8-bit") # Alternative option
|
|
|
46 |
]
|
47 |
|
48 |
+
# Try loading models until success
|
49 |
+
for model_name, size_gb, quantization in model_options:
|
50 |
+
if size_gb <= MEMORY_LIMIT_GB and self._try_load_model(model_name, quantization):
|
51 |
+
self.model_loaded = True
|
52 |
+
break
|
53 |
|
54 |
+
if not self.model_loaded:
|
55 |
+
raise RuntimeError("Failed to load any suitable model within memory constraints")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
# Initialize tools with enhanced implementations
|
58 |
self.tools = [
|
59 |
FunctionTool.from_defaults(
|
60 |
+
fn=self.smart_web_search,
|
61 |
name="web_search",
|
62 |
+
description="Searches the web for current information. Use for questions about recent events, people, or facts not in the model's training data."
|
63 |
),
|
64 |
FunctionTool.from_defaults(
|
65 |
+
fn=self.robust_math_calculator,
|
66 |
name="math_calculator",
|
67 |
+
description="Solves mathematical expressions and equations. Use for calculations, arithmetic, algebra, or numerical problems."
|
68 |
)
|
69 |
]
|
70 |
|
71 |
+
# Initialize ReAct agent with memory optimization
|
72 |
try:
|
73 |
self.agent = ReActAgent.from_tools(
|
74 |
tools=self.tools,
|
75 |
llm=self.llm,
|
76 |
verbose=True,
|
77 |
+
max_iterations=4,
|
78 |
+
react_context="""Think step by step. Use tools when needed:
|
79 |
+
- For current/recent information: web_search
|
80 |
+
- For calculations: math_calculator
|
81 |
+
- Be concise but accurate"""
|
82 |
)
|
83 |
+
print("ReAct Agent initialized successfully")
|
84 |
except Exception as e:
|
85 |
+
print(f"ReAct Agent init failed: {e}")
|
|
|
86 |
self.agent = None
|
|
|
87 |
|
88 |
+
def _try_load_model(self, model_name: str, quantization: str) -> bool:
|
89 |
+
"""Attempt to load model with memory constraints"""
|
90 |
+
try:
|
91 |
+
print(f"Loading {model_name} with {quantization} quantization...")
|
92 |
+
|
93 |
+
model_kwargs = {
|
94 |
+
"torch_dtype": torch.float16,
|
95 |
+
"low_cpu_mem_usage": True,
|
96 |
+
}
|
97 |
+
|
98 |
+
if quantization == "8-bit":
|
99 |
+
model_kwargs["load_in_8bit"] = True
|
100 |
+
elif quantization == "4-bit":
|
101 |
+
model_kwargs["load_in_4bit"] = True
|
102 |
+
|
103 |
+
self.llm = HuggingFaceLLM(
|
104 |
+
model_name=model_name,
|
105 |
+
tokenizer_name=model_name,
|
106 |
+
context_window=2048,
|
107 |
+
max_new_tokens=256,
|
108 |
+
generate_kwargs={
|
109 |
+
"temperature": 0.4,
|
110 |
+
"do_sample": True,
|
111 |
+
"top_p": 0.9,
|
112 |
+
"repetition_penalty": 1.1
|
113 |
+
},
|
114 |
+
device_map="auto" if torch.cuda.is_available() else "cpu",
|
115 |
+
model_kwargs=model_kwargs
|
116 |
+
)
|
117 |
+
|
118 |
+
# Test the model
|
119 |
+
test_response = self.llm.complete("Test response:")
|
120 |
+
if not test_response:
|
121 |
+
raise ValueError("Model failed test response")
|
122 |
+
|
123 |
+
print(f"Successfully loaded {model_name}")
|
124 |
+
return True
|
125 |
+
|
126 |
+
except Exception as e:
|
127 |
+
print(f"Failed to load {model_name}: {str(e)}")
|
128 |
+
self.cleanup_memory()
|
129 |
+
return False
|
130 |
+
|
131 |
+
def smart_web_search(self, query: str) -> str:
|
132 |
+
"""Enhanced web search with focused results"""
|
133 |
+
print(f"Searching: {query[:60]}...")
|
134 |
|
135 |
if not DDGS:
|
136 |
+
return "Web search unavailable (duckduckgo_search not installed)"
|
137 |
|
138 |
try:
|
139 |
with DDGS() as ddgs:
|
140 |
+
# Get focused results with longer snippets
|
141 |
+
results = list(ddgs.text(query, max_results=3))
|
142 |
+
|
143 |
+
if not results:
|
144 |
+
return "No results found"
|
145 |
+
|
146 |
+
# Process results for key information
|
147 |
+
processed = []
|
148 |
+
for i, res in enumerate(results, 1):
|
149 |
+
title = res.get('title', 'No title')
|
150 |
+
body = res.get('body', 'No description')
|
151 |
+
url = res.get('href', '')
|
152 |
|
153 |
+
# Extract most relevant part for the query
|
154 |
+
key_info = self._extract_relevant_info(query, body)
|
155 |
+
|
156 |
+
processed.append(
|
157 |
+
f"🔍 Result {i}:\n"
|
158 |
+
f"Title: {title}\n"
|
159 |
+
f"Info: {key_info[:250]}\n"
|
160 |
+
f"Source: {url}\n"
|
161 |
+
)
|
162 |
+
|
163 |
+
return "\n".join(processed)
|
164 |
except Exception as e:
|
165 |
+
return f"Search error: {str(e)}"
|
|
|
166 |
|
167 |
+
def _extract_relevant_info(self, query: str, text: str) -> str:
|
168 |
+
"""Extract the most relevant portion of text for the query"""
|
169 |
+
query_lower = query.lower()
|
170 |
+
text_lower = text.lower()
|
171 |
|
172 |
+
# Handle different question types
|
173 |
+
if any(w in query_lower for w in ['who is', 'biography', 'born']):
|
174 |
+
# Look for birth/death info
|
175 |
+
match = re.search(r"(born [^.]+? in [^.]+?\.)", text, re.I)
|
176 |
+
return match.group(1) if match else text[:250]
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
+
elif any(w in query_lower for w in ['died', 'death']):
|
179 |
+
match = re.search(r"(died [^.]+?\.)", text, re.I)
|
180 |
+
return match.group(1) if match else text[:250]
|
181 |
+
|
182 |
+
elif any(w in query_lower for w in ['award', 'prize', 'won']):
|
183 |
+
match = re.search(r"(awarded [^.]+? in [^.]+?\.)", text, re.I)
|
184 |
+
return match.group(1) if match else text[:250]
|
185 |
+
|
186 |
+
# Default: return first 250 chars with important sentences
|
187 |
+
sentences = re.split(r'(?<=[.!?]) +', text)
|
188 |
+
important = [s for s in sentences if any(w in s.lower() for w in query.lower().split())]
|
189 |
+
return " ".join(important[:3]) if important else text[:250]
|
190 |
|
191 |
+
def robust_math_calculator(self, expression: str) -> str:
|
192 |
+
"""Improved math calculator with better parsing"""
|
193 |
+
print(f"Calculating: {expression}")
|
194 |
|
195 |
+
# Clean and preprocess the expression
|
196 |
+
expr = expression.strip("'\"")
|
197 |
|
198 |
+
# Replace words with operators
|
199 |
+
replacements = {
|
200 |
+
'plus': '+', 'minus': '-', 'times': '*', 'divided by': '/',
|
201 |
+
'^': '**', 'percent': '/100', 'modulo': '%'
|
202 |
+
}
|
203 |
+
for word, op in replacements.items():
|
204 |
+
expr = expr.replace(word, op)
|
205 |
|
206 |
+
# Extract math expression from text
|
207 |
+
math_match = re.search(r"([-+]?\d*\.?\d+[+\-*/%^()\s]+\d+\.?\d*)", expr)
|
208 |
+
if math_match:
|
209 |
+
expr = math_match.group(1)
|
|
|
|
|
210 |
|
211 |
+
# Safety check
|
212 |
+
allowed_chars = set("0123456789+-*/().%^ ")
|
213 |
+
if not all(c in allowed_chars for c in expr.replace(" ", "")):
|
214 |
+
return "Error: Invalid characters in expression"
|
|
|
215 |
|
216 |
try:
|
217 |
+
# Try direct evaluation first
|
218 |
+
result = eval(expr)
|
219 |
+
return f"Result: {result}"
|
220 |
+
except:
|
221 |
+
# Fallback to sympy if available
|
222 |
+
if sympify:
|
223 |
+
try:
|
224 |
+
result = sympify(expr).evalf()
|
225 |
+
return f"Result: {result}"
|
226 |
+
except SympifyError as e:
|
227 |
+
return f"Math error: {str(e)}"
|
228 |
+
return "Error: Could not evaluate the expression"
|
229 |
+
|
230 |
+
def __call__(self, question: str) -> str:
|
231 |
+
"""Main interface for answering questions"""
|
232 |
+
print(f"\nQuestion: {question[:100]}...")
|
233 |
+
|
234 |
+
try:
|
235 |
+
# Step 1: Classify question type
|
236 |
+
q_type = self._classify_question(question)
|
237 |
+
|
238 |
+
# Step 2: Use appropriate strategy
|
239 |
+
if q_type == "fact":
|
240 |
+
return self._answer_fact_question(question)
|
241 |
+
elif q_type == "math":
|
242 |
+
return self._answer_math_question(question)
|
243 |
else:
|
244 |
+
return self._answer_general_question(question)
|
|
|
245 |
|
246 |
except Exception as e:
|
247 |
+
print(f"Error processing question: {str(e)}")
|
248 |
+
return self._fallback_response(question)
|
249 |
+
|
250 |
+
def _classify_question(self, question: str) -> str:
|
251 |
+
"""Determine the type of question"""
|
252 |
+
q_lower = question.lower()
|
253 |
+
|
254 |
+
# Math questions
|
255 |
+
math_keywords = ['calculate', 'compute', 'sum', 'total', 'average',
|
256 |
+
'percentage', 'equation', 'solve', 'math', 'number',
|
257 |
+
'+', '-', '*', '/', '=']
|
258 |
+
if any(kw in q_lower for kw in math_keywords):
|
259 |
+
return "math"
|
260 |
|
261 |
+
# Fact-based questions
|
262 |
+
fact_keywords = ['current', 'latest', 'recent', 'today', 'news',
|
263 |
+
'who is', 'what is', 'when did', 'where is',
|
264 |
+
'competition', 'winner', 'recipient', 'nationality',
|
265 |
+
'country', 'malko', 'century', 'award', 'born', 'died']
|
266 |
+
if any(kw in q_lower for kw in fact_keywords):
|
267 |
+
return "fact"
|
268 |
+
|
269 |
+
return "general"
|
270 |
+
|
271 |
+
def _answer_fact_question(self, question: str) -> str:
|
272 |
+
"""Handle fact-based questions with web search"""
|
273 |
+
# Extract key entities for focused search
|
274 |
+
entities = re.findall(r"([A-Z][a-z]+(?:\s+[A-Z][a-z]+)*)", question)
|
275 |
+
search_query = " ".join(entities[:3]) or question[:50]
|
276 |
+
|
277 |
+
# Get search results
|
278 |
+
search_results = self.smart_web_search(search_query)
|
279 |
+
|
280 |
+
# Process with LLM if available
|
281 |
+
if self.model_loaded:
|
282 |
+
prompt = f"""Question: {question}
|
283 |
+
Search Results:
|
284 |
+
{search_results}
|
285 |
|
286 |
+
Based ONLY on these results, provide a concise answer.
|
287 |
+
If the answer isn't there, say so."""
|
288 |
|
289 |
+
try:
|
290 |
+
response = self.llm.complete(prompt)
|
291 |
+
return str(response).strip()
|
292 |
+
except:
|
293 |
+
return f"Search results for '{search_query}':\n{search_results}"
|
294 |
|
295 |
+
return f"Search results for '{search_query}':\n{search_results}"
|
296 |
+
|
297 |
+
def _answer_math_question(self, question: str) -> str:
|
298 |
+
"""Handle math questions with calculator"""
|
299 |
+
# Try to extract math expression
|
300 |
+
math_expr = re.search(r"([\d\s+\-*/().^]+)", question)
|
301 |
+
if math_expr:
|
302 |
+
return self.robust_math_calculator(math_expr.group(1))
|
|
|
303 |
|
304 |
+
# If no clear expression, use agent reasoning
|
305 |
+
if self.agent:
|
306 |
+
try:
|
307 |
+
response = self.agent.query(question)
|
308 |
+
return str(response)
|
309 |
+
except:
|
310 |
+
return self._fallback_response(question)
|
311 |
+
|
312 |
+
return self._fallback_response(question)
|
313 |
|
314 |
+
def _answer_general_question(self, question: str) -> str:
|
315 |
+
"""Handle general knowledge questions"""
|
316 |
+
if self.agent:
|
317 |
+
try:
|
318 |
+
response = self.agent.query(question)
|
319 |
+
return str(response)
|
320 |
+
except:
|
321 |
+
return self._fallback_response(question)
|
322 |
+
|
323 |
+
# Fallback to simple LLM response
|
324 |
+
try:
|
325 |
+
response = self.llm.complete(question)
|
326 |
+
return str(response)
|
327 |
+
except:
|
328 |
+
return self._fallback_response(question)
|
329 |
+
|
330 |
+
def _fallback_response(self, question: str) -> str:
|
331 |
+
"""Final fallback when all else fails"""
|
332 |
+
return f"I couldn't generate a complete answer for: {question[:150]}... Please try rephrasing or ask about something more specific."
|
333 |
|
334 |
+
def cleanup_memory(self):
|
335 |
+
"""Clean up memory resources"""
|
336 |
+
if torch.cuda.is_available():
|
337 |
+
torch.cuda.empty_cache()
|
338 |
+
gc.collect()
|
|
|
339 |
|
340 |
|
341 |
# --- Submission Logic ---
|
342 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
343 |
+
"""Handle the full evaluation process"""
|
|
|
|
|
|
|
344 |
space_id = os.getenv("SPACE_ID")
|
345 |
|
346 |
if profile:
|
|
|
354 |
questions_url = f"{api_url}/questions"
|
355 |
submit_url = f"{api_url}/submit"
|
356 |
|
357 |
+
# Initialize agent with memory management
|
|
|
|
|
|
|
358 |
try:
|
359 |
agent = SmartAgent()
|
360 |
except Exception as e:
|
361 |
+
print(f"Agent initialization failed: {e}")
|
|
|
362 |
return f"Error initializing agent: {e}", None
|
363 |
|
364 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
|
|
371 |
response.raise_for_status()
|
372 |
questions_data = response.json()
|
373 |
if not questions_data:
|
374 |
+
return "No questions received from server.", None
|
|
|
375 |
print(f"Fetched {len(questions_data)} questions.")
|
|
|
|
|
|
|
|
|
|
|
|
|
376 |
except Exception as e:
|
377 |
+
return f"Error fetching questions: {e}", None
|
|
|
378 |
|
379 |
+
# Process Questions
|
380 |
results_log = []
|
381 |
answers_payload = []
|
|
|
382 |
|
383 |
for i, item in enumerate(questions_data, 1):
|
384 |
task_id = item.get("task_id")
|
385 |
+
question = item.get("question")
|
386 |
|
387 |
+
if not task_id or not question:
|
|
|
388 |
continue
|
389 |
|
390 |
+
print(f"Processing question {i}/{len(questions_data)} (ID: {task_id})")
|
391 |
|
392 |
try:
|
393 |
+
answer = agent(question)
|
394 |
+
answers_payload.append({
|
395 |
+
"task_id": task_id,
|
396 |
+
"submitted_answer": answer[:2000] # Limit answer length
|
397 |
+
})
|
398 |
results_log.append({
|
399 |
+
"Task ID": task_id,
|
400 |
+
"Question": question[:100] + "..." if len(question) > 100 else question,
|
401 |
+
"Answer": answer[:200] + "..." if len(answer) > 200 else answer
|
402 |
})
|
|
|
403 |
|
404 |
+
# Clean memory every 5 questions
|
405 |
+
if i % 5 == 0:
|
406 |
+
agent.cleanup_memory()
|
407 |
|
408 |
except Exception as e:
|
409 |
+
print(f"Error on question {task_id}: {e}")
|
410 |
+
answers_payload.append({
|
411 |
+
"task_id": task_id,
|
412 |
+
"submitted_answer": f"Error processing question: {str(e)}"
|
413 |
+
})
|
414 |
results_log.append({
|
415 |
+
"Task ID": task_id,
|
416 |
+
"Question": question[:100] + "..." if len(question) > 100 else question,
|
417 |
+
"Answer": f"Error: {str(e)}"
|
418 |
})
|
419 |
|
420 |
+
# Submit Answers
|
|
|
|
|
|
|
|
|
421 |
submission_data = {
|
422 |
+
"username": username.strip(),
|
423 |
+
"agent_code": agent_code,
|
424 |
"answers": answers_payload
|
425 |
}
|
426 |
|
427 |
+
print(f"Submitting {len(answers_payload)} answers...")
|
|
|
|
|
|
|
|
|
428 |
try:
|
429 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
430 |
response.raise_for_status()
|
431 |
+
result = response.json()
|
432 |
|
433 |
+
status = (
|
434 |
+
f"✅ Submission Successful!\n\n"
|
435 |
+
f"User: {result.get('username')}\n"
|
436 |
+
f"Score: {result.get('score', 'N/A')}% "
|
437 |
+
f"({result.get('correct_count', '?')}/{result.get('total_attempted', '?')})\n"
|
438 |
+
f"Message: {result.get('message', '')}"
|
439 |
)
|
440 |
+
return status, pd.DataFrame(results_log)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
441 |
|
442 |
except Exception as e:
|
443 |
+
error_msg = f"❌ Submission Failed: {str(e)}"
|
444 |
+
print(error_msg)
|
445 |
+
return error_msg, pd.DataFrame(results_log)
|
|
|
446 |
|
447 |
|
448 |
# --- Gradio UI ---
|
449 |
with gr.Blocks(title="Local LLM Agent Evaluation") as demo:
|
450 |
+
gr.Markdown("""
|
451 |
+
# � Local LLM Agent Evaluation
|
452 |
+
**Run your local agent against the course evaluation questions**
|
453 |
+
""")
|
454 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
455 |
with gr.Row():
|
456 |
gr.LoginButton()
|
457 |
|
458 |
+
run_btn = gr.Button(
|
459 |
+
"🚀 Run Evaluation & Submit Answers",
|
460 |
+
variant="primary"
|
461 |
+
)
|
|
|
|
|
462 |
|
463 |
+
status_out = gr.Textbox(
|
464 |
+
label="📋 Status",
|
465 |
+
interactive=False
|
|
|
|
|
466 |
)
|
467 |
|
468 |
results_table = gr.DataFrame(
|
469 |
+
label="📊 Results",
|
470 |
+
interactive=False,
|
471 |
+
wrap=True
|
472 |
)
|
473 |
|
474 |
+
run_btn.click(
|
|
|
475 |
fn=run_and_submit_all,
|
476 |
+
outputs=[status_out, results_table]
|
477 |
)
|
478 |
|
479 |
|
480 |
if __name__ == "__main__":
|
481 |
print("\n" + "="*60)
|
482 |
+
print(f"🚀 Starting Agent Evaluation - {datetime.now().strftime('%Y-%m-%d %H:%M')}")
|
483 |
+
print(f"Memory Limit: {MEMORY_LIMIT_GB}GB")
|
484 |
print("="*60)
|
485 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
486 |
demo.launch(
|
487 |
server_name="0.0.0.0",
|
488 |
+
server_port=7860
|
|
|
489 |
)
|