LamiaYT commited on
Commit
ca2b63a
·
1 Parent(s): 81917a3

Initial commit with LlamaIndex-based agent

Browse files
Files changed (3) hide show
  1. app.py +76 -36
  2. data/knowledge.txt +0 -0
  3. requirements.txt +7 -1
app.py CHANGED
@@ -1,27 +1,79 @@
1
  import os
2
  import gradio as gr
3
  import requests
4
- import inspect
5
  import pandas as pd
 
 
 
 
6
 
7
- # (Keep Constants as is)
8
  # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
 
11
- # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
- class BasicAgent:
14
  def __init__(self):
15
- print("BasicAgent initialized.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  def __call__(self, question: str) -> str:
17
- print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
 
 
 
21
 
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
 
23
  """
24
- Fetches all questions, runs the BasicAgent on them, submits all answers,
25
  and displays the results.
26
  """
27
  # --- Determine HF Space Runtime URL and Repo URL ---
@@ -38,13 +90,13 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
38
  questions_url = f"{api_url}/questions"
39
  submit_url = f"{api_url}/submit"
40
 
41
- # 1. Instantiate Agent ( modify this part to create your agent)
42
  try:
43
- agent = BasicAgent()
44
  except Exception as e:
45
  print(f"Error instantiating agent: {e}")
46
  return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
  print(agent_code)
50
 
@@ -139,31 +191,21 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
139
  results_df = pd.DataFrame(results_log)
140
  return status_message, results_df
141
 
142
-
143
- # --- Build Gradio Interface using Blocks ---
144
  with gr.Blocks() as demo:
145
- gr.Markdown("# Basic Agent Evaluation Runner")
146
  gr.Markdown(
147
  """
148
  **Instructions:**
149
-
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
-
154
- ---
155
- **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
  """
159
  )
160
 
161
  gr.LoginButton()
162
-
163
  run_button = gr.Button("Run Evaluation & Submit All Answers")
164
-
165
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- # Removed max_rows=10 from DataFrame constructor
167
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
 
169
  run_button.click(
@@ -173,9 +215,8 @@ with gr.Blocks() as demo:
173
 
174
  if __name__ == "__main__":
175
  print("\n" + "-"*30 + " App Starting " + "-"*30)
176
- # Check for SPACE_HOST and SPACE_ID at startup for information
177
  space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
 
180
  if space_host_startup:
181
  print(f"✅ SPACE_HOST found: {space_host_startup}")
@@ -183,14 +224,13 @@ if __name__ == "__main__":
183
  else:
184
  print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
 
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
  print(f"✅ SPACE_ID found: {space_id_startup}")
188
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
  print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
190
  else:
191
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
192
 
193
  print("-"*(60 + len(" App Starting ")) + "\n")
194
-
195
- print("Launching Gradio Interface for Basic Agent Evaluation...")
196
  demo.launch(debug=True, share=False)
 
1
  import os
2
  import gradio as gr
3
  import requests
 
4
  import pandas as pd
5
+ from llama_index.llms.huggingface import HuggingFaceLLM
6
+ from llama_index.core.agent import ReActAgent
7
+ from llama_index.core.tools import FunctionTool
8
+ from transformers import AutoTokenizer
9
 
 
10
  # --- Constants ---
11
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
12
 
13
+ # --- Advanced Agent Definition ---
14
+ class SmartAgent:
 
15
  def __init__(self):
16
+ print("Initializing Local LLM Agent...")
17
+
18
+ # Initialize Zephyr-7B model
19
+ self.llm = HuggingFaceLLM(
20
+ model_name="HuggingFaceH4/zephyr-7b-beta",
21
+ tokenizer_name="HuggingFaceH4/zephyr-7b-beta",
22
+ context_window=2048,
23
+ max_new_tokens=256,
24
+ generate_kwargs={"temperature": 0.7, "do_sample": True},
25
+ device_map="auto"
26
+ )
27
+
28
+ # Define tools
29
+ self.tools = [
30
+ FunctionTool.from_defaults(
31
+ fn=self.web_search,
32
+ name="web_search",
33
+ description="Searches the web for current information when questions require up-to-date knowledge"
34
+ ),
35
+ FunctionTool.from_defaults(
36
+ fn=self.math_calculator,
37
+ name="math_calculator",
38
+ description="Performs mathematical calculations when questions involve numbers or equations"
39
+ )
40
+ ]
41
+
42
+ # Create agent
43
+ self.agent = ReActAgent.from_tools(
44
+ tools=self.tools,
45
+ llm=self.llm,
46
+ verbose=True
47
+ )
48
+ print("Local LLM Agent initialized successfully.")
49
+
50
+ def web_search(self, query: str) -> str:
51
+ """Simulated web search tool (replace with actual API)"""
52
+ print(f"Web search triggered for: {query[:50]}...")
53
+ return f"Web results for: {query} (implement actual search API here)"
54
+
55
+ def math_calculator(self, expression: str) -> str:
56
+ """Simple math calculator"""
57
+ print(f"Math calculation triggered for: {expression}")
58
+ try:
59
+ result = eval(expression) # Note: In production, use safer eval alternatives
60
+ return str(result)
61
+ except:
62
+ return "Error: Could not evaluate the mathematical expression"
63
+
64
  def __call__(self, question: str) -> str:
65
+ print(f"Processing question (first 50 chars): {question[:50]}...")
66
+ try:
67
+ response = self.agent.query(question)
68
+ return str(response)
69
+ except Exception as e:
70
+ print(f"Agent error: {str(e)}")
71
+ return f"Error processing question: {str(e)}"
72
 
73
+ # --- Original Submission Logic (Keep unchanged) ---
74
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
75
  """
76
+ Fetches all questions, runs the agent on them, submits all answers,
77
  and displays the results.
78
  """
79
  # --- Determine HF Space Runtime URL and Repo URL ---
 
90
  questions_url = f"{api_url}/questions"
91
  submit_url = f"{api_url}/submit"
92
 
93
+ # 1. Instantiate Agent
94
  try:
95
+ agent = SmartAgent() # Using our new SmartAgent instead of BasicAgent
96
  except Exception as e:
97
  print(f"Error instantiating agent: {e}")
98
  return f"Error initializing agent: {e}", None
99
+
100
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
101
  print(agent_code)
102
 
 
191
  results_df = pd.DataFrame(results_log)
192
  return status_message, results_df
193
 
194
+ # --- Build Gradio Interface ---
 
195
  with gr.Blocks() as demo:
196
+ gr.Markdown("# Local LLM Agent Evaluation Runner")
197
  gr.Markdown(
198
  """
199
  **Instructions:**
200
+ 1. Log in to your Hugging Face account
201
+ 2. Click 'Run Evaluation & Submit All Answers'
202
+ 3. Wait for the local LLM to process all questions
 
 
 
 
 
 
203
  """
204
  )
205
 
206
  gr.LoginButton()
 
207
  run_button = gr.Button("Run Evaluation & Submit All Answers")
 
208
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
 
209
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
210
 
211
  run_button.click(
 
215
 
216
  if __name__ == "__main__":
217
  print("\n" + "-"*30 + " App Starting " + "-"*30)
 
218
  space_host_startup = os.getenv("SPACE_HOST")
219
+ space_id_startup = os.getenv("SPACE_ID")
220
 
221
  if space_host_startup:
222
  print(f"✅ SPACE_HOST found: {space_host_startup}")
 
224
  else:
225
  print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
226
 
227
+ if space_id_startup:
228
  print(f"✅ SPACE_ID found: {space_id_startup}")
229
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
230
  print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
231
  else:
232
+ print("ℹ️ SPACE_ID environment variable not found (running locally?).")
233
 
234
  print("-"*(60 + len(" App Starting ")) + "\n")
235
+ print("Launching Gradio Interface for Local LLM Agent Evaluation...")
 
236
  demo.launch(debug=True, share=False)
data/knowledge.txt ADDED
File without changes
requirements.txt CHANGED
@@ -1,2 +1,8 @@
1
  gradio
2
- requests
 
 
 
 
 
 
 
1
  gradio
2
+ requests
3
+ llama-index
4
+ transformers
5
+ torch
6
+ accelerate
7
+ duckduckgo-search # For web search tools
8
+ python-dotenv # For API keys (if needed)