Spaces:
Runtime error
Runtime error
Initial commit with LlamaIndex-based agent
Browse files- app.py +148 -42
- requirements.txt +4 -2
app.py
CHANGED
@@ -7,10 +7,22 @@ import os
|
|
7 |
import gradio as gr
|
8 |
import requests
|
9 |
import pandas as pd
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# --- Constants ---
|
16 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
@@ -19,7 +31,7 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
19 |
class SmartAgent:
|
20 |
def __init__(self):
|
21 |
print("Initializing Local LLM Agent...")
|
22 |
-
|
23 |
# Initialize Zephyr-7B model
|
24 |
self.llm = HuggingFaceLLM(
|
25 |
model_name="HuggingFaceH4/zephyr-7b-beta",
|
@@ -29,21 +41,21 @@ class SmartAgent:
|
|
29 |
generate_kwargs={"temperature": 0.7, "do_sample": True},
|
30 |
device_map="auto"
|
31 |
)
|
32 |
-
|
33 |
# Define tools with real implementations
|
34 |
self.tools = [
|
35 |
FunctionTool.from_defaults(
|
36 |
fn=self.web_search,
|
37 |
name="web_search",
|
38 |
-
description="Searches the web for current information using DuckDuckGo
|
39 |
),
|
40 |
FunctionTool.from_defaults(
|
41 |
fn=self.math_calculator,
|
42 |
name="math_calculator",
|
43 |
-
description="Performs symbolic math using SymPy
|
44 |
)
|
45 |
]
|
46 |
-
|
47 |
# Create ReAct agent with tools
|
48 |
self.agent = ReActAgent.from_tools(
|
49 |
tools=self.tools,
|
@@ -55,27 +67,51 @@ class SmartAgent:
|
|
55 |
def web_search(self, query: str) -> str:
|
56 |
"""Real web search using DuckDuckGo"""
|
57 |
print(f"Web search triggered for: {query[:50]}...")
|
|
|
|
|
|
|
|
|
58 |
try:
|
59 |
with DDGS() as ddgs:
|
60 |
-
results = ddgs.text(query, max_results=3)
|
61 |
if results:
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
else:
|
64 |
-
return "No results found."
|
65 |
except Exception as e:
|
66 |
print(f"Web search error: {e}")
|
67 |
-
return f"Error during web search: {e}"
|
68 |
|
69 |
def math_calculator(self, expression: str) -> str:
|
70 |
"""Safe math evaluation using SymPy"""
|
71 |
print(f"Math calculation triggered for: {expression}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
try:
|
|
|
73 |
result = sympify(expression).evalf()
|
74 |
return str(result)
|
75 |
except SympifyError as e:
|
76 |
-
return f"Error: Could not parse the expression (
|
77 |
except Exception as e:
|
78 |
-
return f"Error: Calculation failed (
|
79 |
|
80 |
def __call__(self, question: str) -> str:
|
81 |
print(f"Processing question (first 50 chars): {question[:50]}...")
|
@@ -84,10 +120,11 @@ class SmartAgent:
|
|
84 |
return str(response)
|
85 |
except Exception as e:
|
86 |
print(f"Agent error: {str(e)}")
|
|
|
87 |
return f"Error processing question: {str(e)}"
|
88 |
|
89 |
|
90 |
-
# ---
|
91 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
92 |
"""
|
93 |
Fetches all questions, runs the agent on them, submits all answers,
|
@@ -111,10 +148,11 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
111 |
agent = SmartAgent()
|
112 |
except Exception as e:
|
113 |
print(f"Error instantiating agent: {e}")
|
|
|
114 |
return f"Error initializing agent: {e}", None
|
115 |
|
116 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
117 |
-
print(agent_code)
|
118 |
|
119 |
# Fetch Questions
|
120 |
print(f"Fetching questions from: {questions_url}")
|
@@ -131,7 +169,6 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
131 |
return f"Error fetching questions: {e}", None
|
132 |
except requests.exceptions.JSONDecodeError as e:
|
133 |
print(f"Error decoding JSON response from questions endpoint: {e}")
|
134 |
-
print(f"Response text: {response.text[:500]}")
|
135 |
return f"Error decoding server response for questions: {e}", None
|
136 |
except Exception as e:
|
137 |
print(f"An unexpected error occurred fetching questions: {e}")
|
@@ -141,45 +178,68 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
141 |
results_log = []
|
142 |
answers_payload = []
|
143 |
print(f"Running agent on {len(questions_data)} questions...")
|
144 |
-
|
|
|
145 |
task_id = item.get("task_id")
|
146 |
question_text = item.get("question")
|
|
|
147 |
if not task_id or question_text is None:
|
148 |
print(f"Skipping item with missing task_id or question: {item}")
|
149 |
continue
|
|
|
|
|
|
|
150 |
try:
|
151 |
submitted_answer = agent(question_text)
|
152 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
153 |
-
results_log.append({
|
|
|
|
|
|
|
|
|
|
|
154 |
except Exception as e:
|
155 |
-
print(f"Error running agent on task {task_id}: {e}")
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
if not answers_payload:
|
159 |
print("Agent did not produce any answers to submit.")
|
160 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
161 |
|
162 |
# Prepare submission
|
163 |
-
submission_data = {
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
165 |
print(status_update)
|
166 |
|
167 |
-
# Submit
|
168 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
169 |
try:
|
170 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
171 |
response.raise_for_status()
|
172 |
result_data = response.json()
|
|
|
173 |
final_status = (
|
174 |
-
f"Submission Successful!\n"
|
175 |
f"User: {result_data.get('username')}\n"
|
176 |
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
177 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
178 |
f"Message: {result_data.get('message', 'No message received.')}"
|
179 |
)
|
180 |
-
print("Submission successful
|
181 |
results_df = pd.DataFrame(results_log)
|
182 |
return final_status, results_df
|
|
|
183 |
except requests.exceptions.HTTPError as e:
|
184 |
error_detail = f"Server responded with status {e.response.status_code}."
|
185 |
try:
|
@@ -187,44 +247,72 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
187 |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
188 |
except requests.exceptions.JSONDecodeError:
|
189 |
error_detail += f" Response: {e.response.text[:500]}"
|
190 |
-
status_message = f"Submission Failed: {error_detail}"
|
191 |
print(status_message)
|
192 |
results_df = pd.DataFrame(results_log)
|
193 |
return status_message, results_df
|
|
|
194 |
except requests.exceptions.Timeout:
|
195 |
-
status_message = "Submission Failed: The request timed out."
|
196 |
print(status_message)
|
197 |
results_df = pd.DataFrame(results_log)
|
198 |
return status_message, results_df
|
|
|
199 |
except requests.exceptions.RequestException as e:
|
200 |
-
status_message = f"Submission Failed: Network error - {e}"
|
201 |
print(status_message)
|
202 |
results_df = pd.DataFrame(results_log)
|
203 |
return status_message, results_df
|
|
|
204 |
except Exception as e:
|
205 |
-
status_message = f"An unexpected error occurred during submission: {e}"
|
206 |
print(status_message)
|
207 |
results_df = pd.DataFrame(results_log)
|
208 |
return status_message, results_df
|
209 |
|
210 |
|
211 |
# --- Gradio UI ---
|
212 |
-
with gr.Blocks() as demo:
|
213 |
-
gr.Markdown("# Local LLM Agent Evaluation Runner")
|
214 |
gr.Markdown(
|
215 |
"""
|
216 |
**Instructions:**
|
217 |
-
1. Log in to your Hugging Face account
|
218 |
-
2. Click 'Run Evaluation & Submit All Answers'
|
219 |
-
3. Wait for the local LLM to process all questions
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
"""
|
221 |
)
|
222 |
|
223 |
-
gr.
|
224 |
-
|
225 |
-
|
226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
|
|
228 |
run_button.click(
|
229 |
fn=run_and_submit_all,
|
230 |
outputs=[status_output, results_table]
|
@@ -232,14 +320,32 @@ with gr.Blocks() as demo:
|
|
232 |
|
233 |
|
234 |
if __name__ == "__main__":
|
235 |
-
print("\n" + "
|
|
|
|
|
|
|
236 |
space_host_startup = os.getenv("SPACE_HOST")
|
237 |
space_id_startup = os.getenv("SPACE_ID")
|
238 |
|
239 |
if space_host_startup:
|
240 |
print(f"โ
SPACE_HOST found: {space_host_startup}")
|
|
|
|
|
|
|
|
|
|
|
241 |
print(f"โ
SPACE_ID found: {space_id_startup}")
|
|
|
|
|
242 |
else:
|
243 |
-
print("
|
244 |
|
245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
import gradio as gr
|
8 |
import requests
|
9 |
import pandas as pd
|
10 |
+
import traceback
|
11 |
|
12 |
+
# Import real tool dependencies
|
13 |
+
try:
|
14 |
+
from duckduckgo_search import DDGS
|
15 |
+
except ImportError:
|
16 |
+
print("Warning: duckduckgo_search not installed. Web search will be limited.")
|
17 |
+
DDGS = None
|
18 |
+
|
19 |
+
try:
|
20 |
+
from sympy import sympify
|
21 |
+
from sympy.core.sympify import SympifyError
|
22 |
+
except ImportError:
|
23 |
+
print("Warning: sympy not installed. Math calculator will be limited.")
|
24 |
+
sympify = None
|
25 |
+
SympifyError = Exception
|
26 |
|
27 |
# --- Constants ---
|
28 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
31 |
class SmartAgent:
|
32 |
def __init__(self):
|
33 |
print("Initializing Local LLM Agent...")
|
34 |
+
|
35 |
# Initialize Zephyr-7B model
|
36 |
self.llm = HuggingFaceLLM(
|
37 |
model_name="HuggingFaceH4/zephyr-7b-beta",
|
|
|
41 |
generate_kwargs={"temperature": 0.7, "do_sample": True},
|
42 |
device_map="auto"
|
43 |
)
|
44 |
+
|
45 |
# Define tools with real implementations
|
46 |
self.tools = [
|
47 |
FunctionTool.from_defaults(
|
48 |
fn=self.web_search,
|
49 |
name="web_search",
|
50 |
+
description="Searches the web for current information using DuckDuckGo when questions require up-to-date knowledge"
|
51 |
),
|
52 |
FunctionTool.from_defaults(
|
53 |
fn=self.math_calculator,
|
54 |
name="math_calculator",
|
55 |
+
description="Performs mathematical calculations and symbolic math using SymPy when questions involve numbers or equations"
|
56 |
)
|
57 |
]
|
58 |
+
|
59 |
# Create ReAct agent with tools
|
60 |
self.agent = ReActAgent.from_tools(
|
61 |
tools=self.tools,
|
|
|
67 |
def web_search(self, query: str) -> str:
|
68 |
"""Real web search using DuckDuckGo"""
|
69 |
print(f"Web search triggered for: {query[:50]}...")
|
70 |
+
|
71 |
+
if not DDGS:
|
72 |
+
return "Web search unavailable - duckduckgo_search not installed"
|
73 |
+
|
74 |
try:
|
75 |
with DDGS() as ddgs:
|
76 |
+
results = list(ddgs.text(query, max_results=3))
|
77 |
if results:
|
78 |
+
formatted_results = []
|
79 |
+
for i, r in enumerate(results, 1):
|
80 |
+
title = r.get('title', 'No title')
|
81 |
+
body = r.get('body', 'No description')[:200]
|
82 |
+
url = r.get('href', '')
|
83 |
+
formatted_results.append(f"{i}. {title}\n{body}...\nSource: {url}")
|
84 |
+
return "\n\n".join(formatted_results)
|
85 |
else:
|
86 |
+
return "No search results found for the query."
|
87 |
except Exception as e:
|
88 |
print(f"Web search error: {e}")
|
89 |
+
return f"Error during web search: {str(e)}"
|
90 |
|
91 |
def math_calculator(self, expression: str) -> str:
|
92 |
"""Safe math evaluation using SymPy"""
|
93 |
print(f"Math calculation triggered for: {expression}")
|
94 |
+
|
95 |
+
if not sympify:
|
96 |
+
# Fallback to basic eval with safety checks
|
97 |
+
try:
|
98 |
+
# Only allow basic math operations
|
99 |
+
allowed_chars = set('0123456789+-*/().^ ')
|
100 |
+
if not all(c in allowed_chars for c in expression.replace(' ', '')):
|
101 |
+
return "Error: Only basic math operations are allowed"
|
102 |
+
result = eval(expression.replace('^', '**'))
|
103 |
+
return str(result)
|
104 |
+
except Exception as e:
|
105 |
+
return f"Error: Could not evaluate the mathematical expression - {str(e)}"
|
106 |
+
|
107 |
try:
|
108 |
+
# Use SymPy for safe evaluation
|
109 |
result = sympify(expression).evalf()
|
110 |
return str(result)
|
111 |
except SympifyError as e:
|
112 |
+
return f"Error: Could not parse the mathematical expression - {str(e)}"
|
113 |
except Exception as e:
|
114 |
+
return f"Error: Calculation failed - {str(e)}"
|
115 |
|
116 |
def __call__(self, question: str) -> str:
|
117 |
print(f"Processing question (first 50 chars): {question[:50]}...")
|
|
|
120 |
return str(response)
|
121 |
except Exception as e:
|
122 |
print(f"Agent error: {str(e)}")
|
123 |
+
print(f"Full traceback: {traceback.format_exc()}")
|
124 |
return f"Error processing question: {str(e)}"
|
125 |
|
126 |
|
127 |
+
# --- Submission Logic ---
|
128 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
129 |
"""
|
130 |
Fetches all questions, runs the agent on them, submits all answers,
|
|
|
148 |
agent = SmartAgent()
|
149 |
except Exception as e:
|
150 |
print(f"Error instantiating agent: {e}")
|
151 |
+
print(f"Full traceback: {traceback.format_exc()}")
|
152 |
return f"Error initializing agent: {e}", None
|
153 |
|
154 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
155 |
+
print(f"Agent code URL: {agent_code}")
|
156 |
|
157 |
# Fetch Questions
|
158 |
print(f"Fetching questions from: {questions_url}")
|
|
|
169 |
return f"Error fetching questions: {e}", None
|
170 |
except requests.exceptions.JSONDecodeError as e:
|
171 |
print(f"Error decoding JSON response from questions endpoint: {e}")
|
|
|
172 |
return f"Error decoding server response for questions: {e}", None
|
173 |
except Exception as e:
|
174 |
print(f"An unexpected error occurred fetching questions: {e}")
|
|
|
178 |
results_log = []
|
179 |
answers_payload = []
|
180 |
print(f"Running agent on {len(questions_data)} questions...")
|
181 |
+
|
182 |
+
for i, item in enumerate(questions_data, 1):
|
183 |
task_id = item.get("task_id")
|
184 |
question_text = item.get("question")
|
185 |
+
|
186 |
if not task_id or question_text is None:
|
187 |
print(f"Skipping item with missing task_id or question: {item}")
|
188 |
continue
|
189 |
+
|
190 |
+
print(f"Processing question {i}/{len(questions_data)}: {task_id}")
|
191 |
+
|
192 |
try:
|
193 |
submitted_answer = agent(question_text)
|
194 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
195 |
+
results_log.append({
|
196 |
+
"Task ID": task_id,
|
197 |
+
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
|
198 |
+
"Submitted Answer": submitted_answer[:200] + "..." if len(submitted_answer) > 200 else submitted_answer
|
199 |
+
})
|
200 |
+
print(f"โ
Completed question {i}: {task_id}")
|
201 |
except Exception as e:
|
202 |
+
print(f"โ Error running agent on task {task_id}: {e}")
|
203 |
+
error_answer = f"AGENT ERROR: {str(e)}"
|
204 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": error_answer})
|
205 |
+
results_log.append({
|
206 |
+
"Task ID": task_id,
|
207 |
+
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
|
208 |
+
"Submitted Answer": error_answer
|
209 |
+
})
|
210 |
|
211 |
if not answers_payload:
|
212 |
print("Agent did not produce any answers to submit.")
|
213 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
214 |
|
215 |
# Prepare submission
|
216 |
+
submission_data = {
|
217 |
+
"username": username.strip(),
|
218 |
+
"agent_code": agent_code,
|
219 |
+
"answers": answers_payload
|
220 |
+
}
|
221 |
+
|
222 |
+
status_update = f"Agent finished processing. Submitting {len(answers_payload)} answers for user '{username}'..."
|
223 |
print(status_update)
|
224 |
|
225 |
+
# Submit answers
|
226 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
227 |
try:
|
228 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
229 |
response.raise_for_status()
|
230 |
result_data = response.json()
|
231 |
+
|
232 |
final_status = (
|
233 |
+
f"๐ Submission Successful!\n\n"
|
234 |
f"User: {result_data.get('username')}\n"
|
235 |
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
236 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
237 |
f"Message: {result_data.get('message', 'No message received.')}"
|
238 |
)
|
239 |
+
print("โ
Submission successful!")
|
240 |
results_df = pd.DataFrame(results_log)
|
241 |
return final_status, results_df
|
242 |
+
|
243 |
except requests.exceptions.HTTPError as e:
|
244 |
error_detail = f"Server responded with status {e.response.status_code}."
|
245 |
try:
|
|
|
247 |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
248 |
except requests.exceptions.JSONDecodeError:
|
249 |
error_detail += f" Response: {e.response.text[:500]}"
|
250 |
+
status_message = f"โ Submission Failed: {error_detail}"
|
251 |
print(status_message)
|
252 |
results_df = pd.DataFrame(results_log)
|
253 |
return status_message, results_df
|
254 |
+
|
255 |
except requests.exceptions.Timeout:
|
256 |
+
status_message = "โ Submission Failed: The request timed out."
|
257 |
print(status_message)
|
258 |
results_df = pd.DataFrame(results_log)
|
259 |
return status_message, results_df
|
260 |
+
|
261 |
except requests.exceptions.RequestException as e:
|
262 |
+
status_message = f"โ Submission Failed: Network error - {e}"
|
263 |
print(status_message)
|
264 |
results_df = pd.DataFrame(results_log)
|
265 |
return status_message, results_df
|
266 |
+
|
267 |
except Exception as e:
|
268 |
+
status_message = f"โ An unexpected error occurred during submission: {e}"
|
269 |
print(status_message)
|
270 |
results_df = pd.DataFrame(results_log)
|
271 |
return status_message, results_df
|
272 |
|
273 |
|
274 |
# --- Gradio UI ---
|
275 |
+
with gr.Blocks(title="Local LLM Agent Evaluation") as demo:
|
276 |
+
gr.Markdown("# ๐ค Local LLM Agent Evaluation Runner")
|
277 |
gr.Markdown(
|
278 |
"""
|
279 |
**Instructions:**
|
280 |
+
1. ๐ Log in to your Hugging Face account using the button below
|
281 |
+
2. ๐ Click 'Run Evaluation & Submit All Answers'
|
282 |
+
3. โณ Wait for the local LLM (Zephyr-7B) to process all questions
|
283 |
+
4. ๐ View your results and submission status
|
284 |
+
|
285 |
+
**Features:**
|
286 |
+
- ๐ Real web search using DuckDuckGo
|
287 |
+
- ๐งฎ Advanced math calculations with SymPy
|
288 |
+
- ๐ง Powered by HuggingFace Zephyr-7B model
|
289 |
"""
|
290 |
)
|
291 |
|
292 |
+
with gr.Row():
|
293 |
+
gr.LoginButton()
|
294 |
+
|
295 |
+
with gr.Row():
|
296 |
+
run_button = gr.Button(
|
297 |
+
"๐ Run Evaluation & Submit All Answers",
|
298 |
+
variant="primary",
|
299 |
+
size="lg"
|
300 |
+
)
|
301 |
+
|
302 |
+
status_output = gr.Textbox(
|
303 |
+
label="๐ Run Status / Submission Result",
|
304 |
+
lines=8,
|
305 |
+
interactive=False,
|
306 |
+
placeholder="Click the button above to start the evaluation..."
|
307 |
+
)
|
308 |
+
|
309 |
+
results_table = gr.DataFrame(
|
310 |
+
label="๐ Questions and Agent Answers",
|
311 |
+
wrap=True,
|
312 |
+
interactive=False
|
313 |
+
)
|
314 |
|
315 |
+
# Wire up the button
|
316 |
run_button.click(
|
317 |
fn=run_and_submit_all,
|
318 |
outputs=[status_output, results_table]
|
|
|
320 |
|
321 |
|
322 |
if __name__ == "__main__":
|
323 |
+
print("\n" + "="*60)
|
324 |
+
print("๐ Application Startup at", pd.Timestamp.now().strftime("%Y-%m-%d %H:%M:%S"))
|
325 |
+
print("="*60)
|
326 |
+
|
327 |
space_host_startup = os.getenv("SPACE_HOST")
|
328 |
space_id_startup = os.getenv("SPACE_ID")
|
329 |
|
330 |
if space_host_startup:
|
331 |
print(f"โ
SPACE_HOST found: {space_host_startup}")
|
332 |
+
print(f" Runtime URL should be: https://{space_host_startup}")
|
333 |
+
else:
|
334 |
+
print("โน๏ธ SPACE_HOST environment variable not found (running locally?).")
|
335 |
+
|
336 |
+
if space_id_startup:
|
337 |
print(f"โ
SPACE_ID found: {space_id_startup}")
|
338 |
+
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
339 |
+
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
340 |
else:
|
341 |
+
print("โน๏ธ SPACE_ID environment variable not found (running locally?).")
|
342 |
|
343 |
+
print("-" * 60)
|
344 |
+
print("๐ฏ Launching Gradio Interface for Local LLM Agent Evaluation...")
|
345 |
+
|
346 |
+
# Launch without share=True for Hugging Face Spaces
|
347 |
+
demo.launch(
|
348 |
+
server_name="0.0.0.0",
|
349 |
+
server_port=7860,
|
350 |
+
show_error=True
|
351 |
+
)
|
requirements.txt
CHANGED
@@ -3,9 +3,11 @@ llama-index-llms-huggingface
|
|
3 |
transformers>=4.30.0
|
4 |
torch>=2.0.0
|
5 |
accelerate
|
6 |
-
gradio>=
|
7 |
requests
|
8 |
pandas
|
9 |
python-dotenv
|
10 |
-
|
11 |
sympy
|
|
|
|
|
|
3 |
transformers>=4.30.0
|
4 |
torch>=2.0.0
|
5 |
accelerate
|
6 |
+
gradio>=4.0.0
|
7 |
requests
|
8 |
pandas
|
9 |
python-dotenv
|
10 |
+
duckduckgo-search
|
11 |
sympy
|
12 |
+
sentencepiece
|
13 |
+
protobuf
|