Spaces:
Runtime error
Runtime error
File size: 19,297 Bytes
34c5bf3 ca2b63a 34c5bf3 574b6ca a42d6f7 51e7f46 26e4907 34c5bf3 10e9b7d a42d6f7 34c5bf3 a42d6f7 757ebd9 e80aab9 3db6293 e80aab9 34c5bf3 31243f4 34c5bf3 a42d6f7 34c5bf3 8f6825e 34c5bf3 51e7f46 34c5bf3 51e7f46 34c5bf3 6ea9560 34c5bf3 ca2b63a 34c5bf3 ca2b63a 34c5bf3 ca2b63a 34c5bf3 a42d6f7 34c5bf3 a42d6f7 757ebd9 34c5bf3 26e4907 34c5bf3 6ea9560 34c5bf3 26e4907 34c5bf3 757ebd9 6ea9560 ca2b63a 34c5bf3 26e4907 8f6825e 34c5bf3 8f6825e 34c5bf3 8f6825e 6ea9560 34c5bf3 6ea9560 34c5bf3 6ea9560 34c5bf3 6ea9560 8f6825e ca2b63a 34c5bf3 6ea9560 34c5bf3 6ea9560 34c5bf3 6ea9560 34c5bf3 6ea9560 34c5bf3 6ea9560 34c5bf3 6ea9560 34c5bf3 8f6825e c549c70 34c5bf3 c549c70 34c5bf3 26e4907 34c5bf3 757ebd9 8f6825e 34c5bf3 8f6825e 6ea9560 51e7f46 ca2b63a 34c5bf3 6ea9560 8f6825e 6ea9560 8f6825e 6ea9560 8f6825e 3c4371f 6ea9560 7e4a06b 31243f4 6ea9560 8f6825e 34c5bf3 31243f4 34c5bf3 31243f4 34c5bf3 757ebd9 6ea9560 36ed51a 3c4371f 8f6825e eccf8e4 6ea9560 8f6825e 7d65c66 31243f4 6ea9560 7d65c66 6ea9560 e80aab9 6ea9560 7d65c66 a42d6f7 6ea9560 34c5bf3 6ea9560 a42d6f7 31243f4 8f6825e a42d6f7 8f6825e 31243f4 a42d6f7 6ea9560 34c5bf3 a42d6f7 31243f4 34c5bf3 8f6825e 34c5bf3 8f6825e 34c5bf3 6ea9560 26e4907 6ea9560 8f6825e 26e4907 8f6825e a42d6f7 26e4907 34c5bf3 a42d6f7 51e7f46 6ea9560 34c5bf3 8f6825e 51e7f46 31243f4 6ea9560 34c5bf3 6ea9560 26e4907 6ea9560 8f6825e 26e4907 6ea9560 a42d6f7 26e4907 34c5bf3 8f6825e a42d6f7 31243f4 6ea9560 8f6825e a42d6f7 6ea9560 26e4907 a42d6f7 e80aab9 34c5bf3 e80aab9 8f6825e a42d6f7 8f6825e 6ea9560 8f6825e 6ea9560 34c5bf3 8f6825e 6ea9560 34c5bf3 6ea9560 34c5bf3 8f6825e 6ea9560 34c5bf3 6ea9560 8f6825e 6ea9560 8f6825e a42d6f7 7d65c66 8f6825e 26e4907 e80aab9 6ea9560 34c5bf3 26e4907 34c5bf3 26e4907 34c5bf3 8f6825e a42d6f7 6ea9560 a42d6f7 8f6825e 34c5bf3 8f6825e 6ea9560 8f6825e a42d6f7 8f6825e 6ea9560 34c5bf3 6ea9560 a42d6f7 34c5bf3 26e4907 a42d6f7 e80aab9 8f6825e 31243f4 8f6825e e80aab9 34c5bf3 a42d6f7 8f6825e a42d6f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 |
# app.py - Improved GAIA Agent with GPT-NeoX-20B + LoRA
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.core.agent import ReActAgent
from llama_index.core.tools import FunctionTool
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import LoraConfig, get_peft_model
import os
import gradio as gr
import requests
import pandas as pd
import traceback
import torch
import re
import json
# Import real tool dependencies
try:
from duckduckgo_search import DDGS
except ImportError:
print("Warning: duckduckgo_search not installed. Web search will be limited.")
DDGS = None
try:
from sympy import sympify, solve, simplify, N, symbols
from sympy.core.sympify import SympifyError
except ImportError:
print("Warning: sympy not installed. Math calculator will be limited.")
sympify = None
SympifyError = Exception
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
def print_trainable_parameters(model):
"""Print trainable parameters info"""
trainable_parameters = 0
all_parameters = 0
for _, param in model.named_parameters():
all_parameters += param.numel()
if param.requires_grad:
trainable_parameters += param.numel()
print(
f"Trainable: {trainable_parameters} || All: {all_parameters} || Trainable %: {100 * trainable_parameters / all_parameters:.2f}%"
)
class ImprovedGAIAAgent:
def __init__(self):
print("๐ Initializing Improved GAIA Agent with GPT-NeoX-20B...")
if not torch.cuda.is_available():
raise RuntimeError("โ CUDA required for GPT-NeoX-20B. Please use a GPU environment.")
gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1e9
print(f"๐ฅ GPU Memory: {gpu_memory:.1f}GB")
# Model configuration
self.model_name = "EleutherAI/gpt-neox-20b"
# 4-bit quantization config for memory efficiency
self.bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
# LoRA configuration for efficient fine-tuning capability
self.lora_config = LoraConfig(
r=16, # Increased for better performance
lora_alpha=32,
target_modules=["query_key_value", "dense", "dense_h_to_4h", "dense_4h_to_h"], # More comprehensive targets
lora_dropout=0.1,
bias="none",
task_type="CAUSAL_LM"
)
self.load_model()
self.setup_tools()
self.create_agent()
def load_model(self):
"""Load and configure the model"""
print("๐ฅ Loading tokenizer...")
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
# Add padding token if not present
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
print("๐ฅ Loading model with 4-bit quantization...")
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
quantization_config=self.bnb_config,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.bfloat16
)
print("๐ง Applying LoRA configuration...")
self.model = get_peft_model(self.model, self.lora_config)
print_trainable_parameters(self.model)
# Create LlamaIndex LLM wrapper
print("๐ Creating LlamaIndex LLM wrapper...")
self.llm = HuggingFaceLLM(
model=self.model,
tokenizer=self.tokenizer,
context_window=2048, # GPT-NeoX context length
max_new_tokens=512,
generate_kwargs={
"temperature": 0.1,
"do_sample": True,
"top_p": 0.9,
"repetition_penalty": 1.1,
"pad_token_id": self.tokenizer.eos_token_id,
},
# Improved system message for GAIA tasks
system_message="""You are a helpful AI assistant that can search the web and perform calculations.
When answering questions:
1. Think step by step
2. Use tools when you need current information or calculations
3. Be precise and factual
4. For numerical answers, provide exact numbers when possible
5. Always show your reasoning
Available tools: web_search, math_calculator"""
)
def setup_tools(self):
"""Setup enhanced tools for GAIA benchmark"""
self.tools = [
FunctionTool.from_defaults(
fn=self.enhanced_web_search,
name="web_search",
description="Search the web for current information, facts, people, events, or recent data. Use specific keywords."
),
FunctionTool.from_defaults(
fn=self.advanced_calculator,
name="math_calculator",
description="Perform mathematical calculations, solve equations, handle percentages, averages, and complex math operations."
),
FunctionTool.from_defaults(
fn=self.fact_checker,
name="fact_checker",
description="Verify facts and get detailed information about people, places, events, or concepts."
)
]
def enhanced_web_search(self, query: str) -> str:
"""Enhanced web search with better result processing"""
print(f"๐ Enhanced search: {query}")
if not DDGS:
return "Web search unavailable - duckduckgo_search not installed"
try:
with DDGS() as ddgs:
# Get both regular results and news if relevant
results = list(ddgs.text(query, max_results=8, region='wt-wt'))
if not results:
return f"No results found for: {query}"
# Process and format results
formatted_results = []
for i, result in enumerate(results, 1):
title = result.get('title', 'No title')
body = result.get('body', '').strip()
url = result.get('href', '')
# Extract key information
if len(body) > 300:
body = body[:300] + "..."
formatted_results.append(f"""Result {i}: {title}
Content: {body}
Source: {url}
""")
search_summary = f"Search results for '{query}':\n\n" + "\n".join(formatted_results)
# Try to extract specific answers for common question types
if any(keyword in query.lower() for keyword in ['how many', 'when was', 'who is', 'what year']):
# Look for numbers and dates in results
all_text = " ".join([r.get('body', '') for r in results])
# Extract years
years = re.findall(r'\b(19|20)\d{2}\b', all_text)
if years and 'when' in query.lower():
search_summary += f"\n\nExtracted years: {', '.join(set(years))}"
# Extract numbers
numbers = re.findall(r'\b\d+\b', all_text)
if numbers and 'how many' in query.lower():
search_summary += f"\n\nExtracted numbers: {', '.join(set(numbers)[:5])}"
return search_summary
except Exception as e:
print(f"โ Search error: {e}")
return f"Search failed: {str(e)}"
def advanced_calculator(self, expression: str) -> str:
"""Advanced calculator with symbolic math"""
print(f"๐งฎ Advanced calculation: {expression}")
try:
# Clean and normalize the expression
clean_expr = expression.replace('^', '**').replace('ร', '*').replace('รท', '/')
clean_expr = re.sub(r'(\d)\s*\(', r'\1*(', clean_expr) # Add implicit multiplication
if sympify:
try:
# Try symbolic computation first
expr = sympify(clean_expr, evaluate=False)
result = simplify(expr)
numerical = N(result, 15) # High precision
# Handle different result types
if result.is_number:
return f"Calculation: {expression} = {numerical}"
else:
return f"Calculation: {expression} = {result} โ {numerical}"
except SympifyError:
# Fallback to numerical evaluation
result = eval(clean_expr)
return f"Calculation: {expression} = {result}"
else:
# Basic evaluation
result = eval(clean_expr)
return f"Calculation: {expression} = {result}"
except Exception as e:
return f"Could not calculate '{expression}': {str(e)}"
def fact_checker(self, query: str) -> str:
"""Specialized fact checking with multiple search strategies"""
print(f"โ
Fact checking: {query}")
# Try different search strategies
search_variations = [
query,
f"{query} facts",
f"{query} biography" if any(word in query.lower() for word in ['who is', 'person', 'artist']) else f"{query} information",
]
all_results = []
for search_query in search_variations[:2]: # Limit to avoid rate limiting
result = self.enhanced_web_search(search_query)
if "No results found" not in result:
all_results.append(f"Search: {search_query}\n{result}")
return "\n\n" + "="*50 + "\n\n".join(all_results) if all_results else f"Could not verify facts about: {query}"
def create_agent(self):
"""Create the ReAct agent"""
print("๐ค Creating ReAct agent...")
try:
self.agent = ReActAgent.from_tools(
tools=self.tools,
llm=self.llm,
verbose=True,
max_iterations=5, # Allow more iterations for complex problems
react_chat_formatter=None, # Use default formatter
)
print("โ
ReAct Agent created successfully")
except Exception as e:
print(f"โ Agent creation failed: {e}")
traceback.print_exc()
raise
def __call__(self, question: str) -> str:
"""Process question through the agent"""
print(f"\n" + "="*60)
print(f"๐ค Processing: {question}")
print("="*60)
try:
# Use the agent to process the question
response = self.agent.query(question)
answer = str(response).strip()
# Validate response quality
if len(answer) < 10 or answer.lower() in ['error', 'none', 'unknown']:
print("โ ๏ธ Poor response, trying direct approach...")
return self._direct_approach(question)
print(f"โ
Agent response: {answer[:200]}...")
return answer
except Exception as e:
print(f"โ Agent error: {e}")
print("๐ Falling back to direct approach...")
return self._direct_approach(question)
def _direct_approach(self, question: str) -> str:
"""Direct approach when agent fails"""
question_lower = question.lower()
# Determine approach based on question type
if any(term in question_lower for term in ['calculate', 'compute', 'math', '+', '-', '*', '/', '=', 'percentage', 'average']):
# Math-focused approach
math_result = self.advanced_calculator(question)
return math_result
elif any(term in question_lower for term in ['who is', 'when was', 'where is', 'what is', 'how many']):
# Search-focused approach
search_result = self.enhanced_web_search(question)
fact_result = self.fact_checker(question)
return f"{search_result}\n\nFact Check:\n{fact_result}"
else:
# General approach
search_result = self.enhanced_web_search(question)
return search_result
def cleanup_memory():
"""Clean up GPU memory"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("๐งน Memory cleaned")
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""Run evaluation with improved agent"""
if not profile:
return "โ Please login to Hugging Face first", None
username = profile.username
print(f"๐ค User: {username}")
# API endpoints
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
cleanup_memory()
# Initialize improved agent
try:
print("๐ Initializing Improved GAIA Agent...")
agent = ImprovedGAIAAgent()
print("โ
Agent initialized successfully")
except Exception as e:
error_msg = f"โ Agent initialization failed: {str(e)}\n{traceback.format_exc()}"
print(error_msg)
return error_msg, None
# Get space info
space_id = os.getenv("SPACE_ID", "unknown")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
# Fetch questions
try:
print("๐ฅ Fetching questions...")
response = requests.get(questions_url, timeout=30)
response.raise_for_status()
questions_data = response.json()
print(f"๐ Got {len(questions_data)} questions")
except Exception as e:
return f"โ Failed to fetch questions: {str(e)}", None
# Process all questions
results_log = []
answers_payload = []
print("\n" + "="*50)
print("๐ STARTING GAIA EVALUATION")
print("="*50)
for i, item in enumerate(questions_data, 1):
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or not question_text:
continue
print(f"\n๐ Question {i}/{len(questions_data)}")
print(f"๐ ID: {task_id}")
print(f"โ Question: {question_text}")
try:
# Get answer from improved agent
answer = agent(question_text)
# Ensure answer is meaningful
if not answer or len(answer.strip()) < 5:
answer = f"Unable to determine answer for: {question_text[:100]}..."
print(f"โ
Answer: {answer[:200]}...")
# Store results
answers_payload.append({
"task_id": task_id,
"submitted_answer": answer
})
results_log.append({
"Task ID": task_id,
"Question": question_text[:150] + ("..." if len(question_text) > 150 else ""),
"Answer": answer[:200] + ("..." if len(answer) > 200 else "")
})
# Memory cleanup every few questions
if i % 3 == 0:
cleanup_memory()
except Exception as e:
print(f"โ Error processing {task_id}: {e}")
error_answer = f"Processing error: {str(e)[:150]}"
answers_payload.append({
"task_id": task_id,
"submitted_answer": error_answer
})
results_log.append({
"Task ID": task_id,
"Question": question_text[:150] + "...",
"Answer": error_answer
})
print(f"\n๐ค Submitting {len(answers_payload)} answers...")
# Submit answers
submission_data = {
"username": username,
"agent_code": agent_code,
"answers": answers_payload
}
try:
response = requests.post(submit_url, json=submission_data, timeout=180)
response.raise_for_status()
result_data = response.json()
score = result_data.get('score', 0)
correct = result_data.get('correct_count', 0)
total = result_data.get('total_attempted', len(answers_payload))
message = result_data.get('message', '')
# Create final status message
final_status = f"""๐ IMPROVED GAIA EVALUATION COMPLETE!
๐ค User: {username}
๐ค Model: GPT-NeoX-20B + LoRA + 4-bit Quantization
๐ Final Score: {score}%
โ
Correct: {correct}/{total}
๐ฏ Target: 30%+ {'๐ ACHIEVED!' if score >= 30 else '๐ Significant improvement expected!'}
๐ Message: {message}
๐ง Improvements Made:
- โ
Proper causal LM (GPT-NeoX-20B) instead of encoder-decoder
- โ
4-bit quantization for memory efficiency
- โ
LoRA for better parameter efficiency
- โ
Enhanced tools with fact checking
- โ
Better reasoning prompts
- โ
Multi-strategy search approach
"""
print(f"\n๐ FINAL SCORE: {score}%")
return final_status, pd.DataFrame(results_log)
except Exception as e:
error_msg = f"โ Submission failed: {str(e)}"
print(error_msg)
return error_msg, pd.DataFrame(results_log)
# --- Gradio Interface ---
with gr.Blocks(title="Improved GAIA Agent", theme=gr.themes.Soft()) as demo:
gr.Markdown("# ๐ Improved GAIA Agent - GPT-NeoX-20B + LoRA")
gr.Markdown("""
**Major Improvements:**
- ๐ง **GPT-NeoX-20B**: 20B parameter causal language model (vs 220M FLAN-T5)
- โก **4-bit Quantization**: Memory efficient loading with BitsAndBytes
- ๐ฏ **LoRA**: Parameter-efficient fine-tuning ready
- ๐ **Enhanced Tools**: Multi-strategy search + fact checking + advanced math
- ๐ค **Better ReAct**: Improved reasoning prompts and error handling
- ๐ **Expected**: Significant improvement over 0% baseline
**Requirements**: CUDA GPU with 16GB+ VRAM
""")
with gr.Row():
gr.LoginButton()
with gr.Row():
run_button = gr.Button(
"๐ Run Improved GAIA Evaluation",
variant="primary",
size="lg"
)
status_output = gr.Textbox(
label="๐ Evaluation Results",
lines=15,
interactive=False
)
results_table = gr.DataFrame(
label="๐ Detailed Results",
wrap=True
)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("๐ Starting Improved GAIA Agent...")
print("๐ช Using GPT-NeoX-20B + LoRA + 4-bit Quantization")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True
) |