Spaces:
Sleeping
Sleeping
File size: 6,570 Bytes
8174974 e3ac22d 8174974 efa60b3 66128ac efa60b3 49f0804 66128ac b3f2d3d efa60b3 0e52653 66128ac 0e52653 66128ac b35a08e 0e52653 e3ac22d 8174974 49f0804 0ca9296 49f0804 0ca9296 8174974 0ca9296 66128ac 8174974 b35a08e 49f0804 b35a08e 49f0804 b35a08e 66128ac 29a8952 ef8cc0f 8174974 e16b3ce 29a8952 e3ac22d 8174974 e16b3ce 8174974 d40453d e16b3ce 29a8952 e16b3ce e3ac22d 29a8952 e16b3ce 29a8952 e16b3ce 29a8952 e6fc2f8 29a8952 e6fc2f8 29a8952 e6fc2f8 29a8952 e3ac22d 29a8952 ef8cc0f 29a8952 8174974 ef8cc0f 29a8952 e3ac22d e16b3ce d40453d e3ac22d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
# Smart Customer Support Assistant (Enhanced UI Version)
# Note: Enhanced UI with role avatars, structured suggestions, and end chat functionality
import streamlit as st
from transformers import pipeline
import re
emotion_classifier = pipeline(
"text-classification",
model="j-hartmann/emotion-english-distilroberta-base",
return_all_scores=True
)
intent_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
text_generator = pipeline("text2text-generation", model="declare-lab/flan-alpaca-base")
candidate_tasks = [
"change mobile plan",
"top up balance",
"report service outage",
"ask for billing support",
"reactivate service",
"cancel subscription",
"check account status",
"upgrade device"
]
def generate_response(intent, human=True):
if human:
prompt = (
f"Write a customer service message for intent '{intent}'. Structure into: "
"1. Greeting, 2. Description of customer's current service (Plan X ¥X/GB, etc.) and a suitable new option, "
"3. A polite closing question. Use placeholder data (Plan X, ¥X, etc.)."
)
else:
prompt = (
f"Reply to the following user request automatically: '{intent}'. Directly resolve the request in one helpful message. "
"If it's plan change, suggest suitable options. Use placeholders (Plan A ¥X/5GB, Plan B ¥Y/15GB, etc.)."
)
return text_generator(prompt, max_new_tokens=100, do_sample=True)[0]['generated_text']
urgent_emotions = {"anger", "frustration", "anxiety", "urgency", "afraid", "annoyed"}
moderate_emotions = {"confused", "sad", "tired", "concerned", "sadness"}
def refine_emotion_label(text, model_emotion):
text_lower = text.lower()
urgent_keywords = ["fix", "now", "immediately", "urgent", "can't", "need", "asap"]
exclamations = text.count("!")
upper_words = sum(1 for word in text.split() if word.isupper())
signal_score = sum([
any(word in text_lower for word in urgent_keywords),
exclamations >= 2,
upper_words >= 1
])
if model_emotion.lower() in {"joy", "neutral", "sadness"} and signal_score >= 2:
return "urgency"
return model_emotion
def get_emotion_label(emotion_result, text):
sorted_emotions = sorted(emotion_result[0], key=lambda x: x['score'], reverse=True)
return refine_emotion_label(text, sorted_emotions[0]['label'])
def get_emotion_score(emotion):
if emotion.lower() in urgent_emotions:
return 1.0
elif emotion.lower() in moderate_emotions:
return 0.6
else:
return 0.2
st.set_page_config(page_title="Smart Customer Support Assistant", layout="wide")
st.sidebar.title("📁 Customer Selector")
if "customers" not in st.session_state:
st.session_state.customers = {"Customer A": [], "Customer B": [], "Customer C": []}
customer_names = list(st.session_state.customers.keys())
selected_customer = st.sidebar.selectbox("Choose a customer:", customer_names)
if "chat_sessions" not in st.session_state:
st.session_state.chat_sessions = {}
if selected_customer not in st.session_state.chat_sessions:
st.session_state.chat_sessions[selected_customer] = {
"chat": [],
"system_result": None,
"agent_reply": "",
"support_required": ""
}
session = st.session_state.chat_sessions[selected_customer]
st.title("Smart Customer Support Assistant (for Agents Only)")
st.markdown("### Conversation")
for msg in session["chat"]:
avatar = "👤" if msg['role'] == 'user' else ("🤖" if msg.get("auto") else "👨💼")
with st.chat_message(msg['role'], avatar=avatar):
st.markdown(msg['content'])
col1, col2 = st.columns([6,1])
with col1:
user_input = st.text_input("Enter customer message:", key="user_input")
with col2:
analyze_clicked = st.button("Analyze", use_container_width=True)
if analyze_clicked and user_input.strip():
emotion_result = emotion_classifier(user_input)
emotion_label = get_emotion_label(emotion_result, user_input)
emotion_score = get_emotion_score(emotion_label)
intent_result = intent_classifier(user_input, candidate_tasks)
top_intents = [label for label, score in zip(intent_result['labels'], intent_result['scores']) if score > 0.15][:3]
content_score = 0.0
if any(x in user_input.lower() for x in ["out of service", "can't", "urgent", "immediately"]):
content_score += 0.4
if any(label in ["top up balance", "reactivate service"] for label in top_intents):
content_score += 0.4
final_score = 0.5 * emotion_score + 0.5 * content_score
session["chat"].append({"role": "user", "content": user_input})
if final_score < 0.5 and top_intents:
intent = top_intents[0]
response = generate_response(intent, human=False)
session["chat"].append({"role": "assistant", "content": response, "auto": True})
session["system_result"] = None
session["support_required"] = "🟢 Automated response handled this request."
else:
session["system_result"] = {
"emotion": emotion_label,
"tone": "Urgent" if emotion_score > 0.8 else "Concerned" if emotion_score > 0.5 else "Calm",
"intents": top_intents
}
session["support_required"] = "🔴 Human support required."
if session["support_required"]:
st.markdown(f"### {session['support_required']}")
st.subheader("Agent Response Console")
session["agent_reply"] = st.text_area("Compose your reply:", value=session["agent_reply"])
if st.button("Send Reply"):
if session["agent_reply"].strip():
session["chat"].append({"role": "assistant", "content": session["agent_reply"], "auto": False})
session["agent_reply"] = ""
session["system_result"] = None
session["support_required"] = ""
if session["system_result"] is not None:
st.markdown("#### Customer Status")
st.markdown(f"- **Emotion:** {session['system_result']['emotion'].capitalize()}")
st.markdown(f"- **Tone:** {session['system_result']['tone']}")
st.markdown("#### Detected Customer Needs")
for intent in session['system_result']['intents']:
suggestion = generate_response(intent, human=True)
st.markdown(f"**• {intent.capitalize()}**")
st.code(suggestion)
if st.button("End Conversation"):
session["chat"] = []
session["system_result"] = None
session["agent_reply"] = ""
session["support_required"] = ""
st.success("Conversation ended and cleared.")
|