Spaces:
Running
Running
File size: 5,691 Bytes
6a671c6 500f371 4bde338 5ef5e82 63666ab bc54a0a 5ef5e82 aef709e 5ef5e82 aef709e 5ef5e82 0f5b4d0 5ef5e82 bc54a0a f9815f3 aca2296 ccfd058 aca2296 5ef5e82 bc54a0a 5ef5e82 aef709e f9815f3 5ef5e82 f9815f3 ccfd058 f9815f3 aef709e f9815f3 4bde338 aef709e f9815f3 aef709e f9815f3 4bde338 5ef5e82 aef709e effb607 aef709e ccfd058 4bde338 ccfd058 8166fea ccfd058 5ef5e82 ccfd058 5ef5e82 aef709e f9815f3 5ef5e82 4bde338 5ef5e82 834a27f 5ef5e82 f105810 5ef5e82 aef709e b6515bb 5ef5e82 ccfd058 5ef5e82 ccfd058 5ef5e82 bc54a0a 5ef5e82 8607e04 cdc830d d8bd84f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
TITLE = """<h1 align="center">Gemini Playground ✨</h1>"""
SUBTITLE = """<h2 align="center">Play with Gemini Pro and Gemini Pro Vision</h2>"""
import os
import time
import uuid
from typing import List, Tuple, Optional, Union
import google.generativeai as genai
import gradio as gr
from PIL import Image
from dotenv import load_dotenv
# Cargar las variables de entorno desde el archivo .env
load_dotenv()
print("google-generativeai:", genai.__version__)
# Obtener la clave de la API de las variables de entorno
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
# Verificar que la clave de la API esté configurada
if not GOOGLE_API_KEY:
raise ValueError("GOOGLE_API_KEY is not set in environment variables.")
IMAGE_CACHE_DIRECTORY = "/tmp"
IMAGE_WIDTH = 512
CHAT_HISTORY = List[Tuple[Optional[Union[Tuple[str], str]], Optional[str]]]
def preprocess_image(image: Image.Image) -> Optional[Image.Image]:
if image:
image_height = int(image.height * IMAGE_WIDTH / image.width)
return image.resize((IMAGE_WIDTH, image_height))
def cache_pil_image(image: Image.Image) -> str:
image_filename = f"{uuid.uuid4()}.jpeg"
os.makedirs(IMAGE_CACHE_DIRECTORY, exist_ok=True)
image_path = os.path.join(IMAGE_CACHE_DIRECTORY, image_filename)
image.save(image_path, "JPEG")
return image_path
def upload(files: Optional[List[str]], chatbot: CHAT_HISTORY) -> CHAT_HISTORY:
for file in files:
image = Image.open(file).convert('RGB')
image_preview = preprocess_image(image)
if image_preview:
# Display a preview of the uploaded image
gr.Image(image_preview).render()
image_path = cache_pil_image(image)
chatbot.append(((image_path,), None))
return chatbot
def user(text_prompt: str, chatbot: CHAT_HISTORY):
if text_prompt:
chatbot.append((text_prompt, None))
return "", chatbot
def bot(
files: Optional[List[str]],
model_choice: str,
system_instruction: str, # Instrucción del sistema
chatbot: CHAT_HISTORY
):
if not GOOGLE_API_KEY:
raise ValueError("GOOGLE_API_KEY is not set.")
# Configurar la API con la clave
genai.configure(api_key=GOOGLE_API_KEY)
generation_config = genai.types.GenerationConfig(
temperature=0.7, # Valor predeterminado
max_output_tokens=8192, # Fijar el límite de tokens a 8,192
top_k=10, # Valor predeterminado
top_p=0.9 # Valor predeterminado
)
text_prompt = [chatbot[-1][0]] if chatbot and chatbot[-1][0] and isinstance(chatbot[-1][0], str) else []
image_prompt = [preprocess_image(Image.open(file).convert('RGB')) for file in files] if files else []
# Crear el modelo con la instrucción del sistema
model = genai.GenerativeModel(
model_name=model_choice,
generation_config=generation_config,
system_instruction=system_instruction # Se pasa la instrucción del sistema
)
response = model.generate_content(text_prompt + image_prompt, stream=True, generation_config=generation_config)
chatbot[-1][1] = ""
for chunk in response:
for i in range(0, len(chunk.text), 10):
section = chunk.text[i:i + 10]
chatbot[-1][1] += section
time.sleep(0.01)
yield chatbot
# Componente para ingresar la instrucción del sistema dentro del despegable
system_instruction_dropdown = gr.Accordion(
label="System Instruction",
open=False,
children=gr.Textbox(
lines=2,
show_label=False,
placeholder="Enter system instruction here..."
)
)
# Definir los componentes de entrada y salida
chatbot_component = gr.Chatbot(
label='Gemini',
bubble_full_width=False,
scale=2,
height=300
)
text_prompt_component = gr.Textbox(
placeholder="Message...", show_label=False, autofocus=True, scale=8
)
upload_button_component = gr.UploadButton(
label="Upload Images", file_count="multiple", file_types=["image"], scale=1
)
run_button_component = gr.Button(value="Run", variant="primary", scale=1)
model_choice_component = gr.Dropdown(
choices=["gemini-1.5-flash", "gemini-2.0-flash-exp", "gemini-1.5-pro"],
value="gemini-1.5-flash",
label="Select Model",
scale=2
)
user_inputs = [
text_prompt_component,
chatbot_component
]
bot_inputs = [
upload_button_component,
model_choice_component, # El campo de modelo está ahora arriba
system_instruction_dropdown.children, # Se toma el texto del componente interno
chatbot_component
]
# Definir la interfaz de usuario
with gr.Blocks() as demo:
gr.HTML(TITLE)
gr.HTML(SUBTITLE)
with gr.Column():
model_choice_component.render()
chatbot_component.render()
with gr.Row():
text_prompt_component.render()
upload_button_component.render()
run_button_component.render()
system_instruction_dropdown.render()
run_button_component.click(
fn=user,
inputs=user_inputs,
outputs=[text_prompt_component, chatbot_component],
queue=False
).then(
fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
)
text_prompt_component.submit(
fn=user,
inputs=user_inputs,
outputs=[text_prompt_component, chatbot_component],
queue=False
).then(
fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
)
upload_button_component.upload(
fn=upload,
inputs=[upload_button_component, chatbot_component],
outputs=[chatbot_component],
queue=False
)
# Lanzar la aplicación
demo.queue(max_size=99).launch(debug=False, show_error=True)
|