Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -26,9 +26,6 @@ IMAGE_CACHE_DIRECTORY = "/tmp"
|
|
| 26 |
IMAGE_WIDTH = 512
|
| 27 |
CHAT_HISTORY = List[Tuple[Optional[Union[Tuple[str], str]], Optional[str]]]
|
| 28 |
|
| 29 |
-
# Configurar la API de Gemini
|
| 30 |
-
genai.configure(api_key=GOOGLE_API_KEY)
|
| 31 |
-
|
| 32 |
# Funci贸n para transformar el historial del chat
|
| 33 |
def transform_history(history: CHAT_HISTORY):
|
| 34 |
"""
|
|
@@ -43,27 +40,23 @@ def transform_history(history: CHAT_HISTORY):
|
|
| 43 |
return transformed
|
| 44 |
|
| 45 |
# Funci贸n de generaci贸n de respuesta
|
| 46 |
-
def response(
|
| 47 |
-
message: str, history: CHAT_HISTORY, model_choice: str, system_instruction: str
|
| 48 |
-
) -> str:
|
| 49 |
"""
|
| 50 |
Genera una respuesta basada en el historial del chat y el mensaje del usuario.
|
| 51 |
"""
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
|
|
|
| 57 |
)
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
transformed_history = transform_history(history)
|
| 66 |
-
model_response = model.chat(messages=transformed_history + [{"role": "user", "content": message}])
|
| 67 |
return model_response.text
|
| 68 |
|
| 69 |
# Preprocesamiento de im谩genes
|
|
@@ -83,7 +76,7 @@ def cache_pil_image(image: Image.Image) -> str:
|
|
| 83 |
# Subir im谩genes
|
| 84 |
def upload(files: Optional[List[str]], chatbot: CHAT_HISTORY) -> CHAT_HISTORY:
|
| 85 |
for file in files:
|
| 86 |
-
image = Image.open(file).convert(
|
| 87 |
image_preview = preprocess_image(image)
|
| 88 |
if image_preview:
|
| 89 |
gr.Image(image_preview).render()
|
|
@@ -102,10 +95,32 @@ def bot(
|
|
| 102 |
files: Optional[List[str]],
|
| 103 |
model_choice: str,
|
| 104 |
system_instruction: str,
|
| 105 |
-
chatbot: CHAT_HISTORY
|
| 106 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
text_prompt = chatbot[-1][0] if chatbot and chatbot[-1][0] and isinstance(chatbot[-1][0], str) else ""
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
chatbot[-1] = (text_prompt, bot_reply)
|
| 110 |
return chatbot
|
| 111 |
|
|
@@ -114,7 +129,7 @@ system_instruction_component = gr.Textbox(
|
|
| 114 |
placeholder="Enter system instruction...", show_label=True, scale=8
|
| 115 |
)
|
| 116 |
chatbot_component = gr.Chatbot(
|
| 117 |
-
label=
|
| 118 |
bubble_full_width=False,
|
| 119 |
scale=2,
|
| 120 |
height=300
|
|
@@ -135,14 +150,14 @@ model_choice_component = gr.Dropdown(
|
|
| 135 |
|
| 136 |
user_inputs = [
|
| 137 |
text_prompt_component,
|
| 138 |
-
chatbot_component
|
| 139 |
]
|
| 140 |
|
| 141 |
bot_inputs = [
|
| 142 |
upload_button_component,
|
| 143 |
model_choice_component,
|
| 144 |
system_instruction_component,
|
| 145 |
-
chatbot_component
|
| 146 |
]
|
| 147 |
|
| 148 |
# Interfaz de usuario
|
|
|
|
| 26 |
IMAGE_WIDTH = 512
|
| 27 |
CHAT_HISTORY = List[Tuple[Optional[Union[Tuple[str], str]], Optional[str]]]
|
| 28 |
|
|
|
|
|
|
|
|
|
|
| 29 |
# Funci贸n para transformar el historial del chat
|
| 30 |
def transform_history(history: CHAT_HISTORY):
|
| 31 |
"""
|
|
|
|
| 40 |
return transformed
|
| 41 |
|
| 42 |
# Funci贸n de generaci贸n de respuesta
|
| 43 |
+
def response(message: str, history: CHAT_HISTORY, model: genai.GenerativeModel):
|
|
|
|
|
|
|
| 44 |
"""
|
| 45 |
Genera una respuesta basada en el historial del chat y el mensaje del usuario.
|
| 46 |
"""
|
| 47 |
+
# Crear el input para el modelo basado en el historial y el mensaje del usuario
|
| 48 |
+
input_text = "\n".join(
|
| 49 |
+
[
|
| 50 |
+
f"User: {item[0]}" if item[0] else f"Bot: {item[1]}"
|
| 51 |
+
for item in history
|
| 52 |
+
]
|
| 53 |
)
|
| 54 |
+
input_text += f"\nUser: {message}"
|
| 55 |
+
|
| 56 |
+
# Generar la respuesta
|
| 57 |
+
model_response = model.generate(input_text)
|
| 58 |
+
|
| 59 |
+
# Retornar la respuesta generada
|
|
|
|
|
|
|
|
|
|
| 60 |
return model_response.text
|
| 61 |
|
| 62 |
# Preprocesamiento de im谩genes
|
|
|
|
| 76 |
# Subir im谩genes
|
| 77 |
def upload(files: Optional[List[str]], chatbot: CHAT_HISTORY) -> CHAT_HISTORY:
|
| 78 |
for file in files:
|
| 79 |
+
image = Image.open(file).convert('RGB')
|
| 80 |
image_preview = preprocess_image(image)
|
| 81 |
if image_preview:
|
| 82 |
gr.Image(image_preview).render()
|
|
|
|
| 95 |
files: Optional[List[str]],
|
| 96 |
model_choice: str,
|
| 97 |
system_instruction: str,
|
| 98 |
+
chatbot: CHAT_HISTORY
|
| 99 |
):
|
| 100 |
+
if not GOOGLE_API_KEY:
|
| 101 |
+
raise ValueError("GOOGLE_API_KEY is not set.")
|
| 102 |
+
|
| 103 |
+
# Configurar la API con la clave
|
| 104 |
+
genai.configure(api_key=GOOGLE_API_KEY)
|
| 105 |
+
generation_config = genai.types.GenerationConfig(
|
| 106 |
+
temperature=0.7,
|
| 107 |
+
max_output_tokens=8192,
|
| 108 |
+
top_k=10,
|
| 109 |
+
top_p=0.9
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
text_prompt = chatbot[-1][0] if chatbot and chatbot[-1][0] and isinstance(chatbot[-1][0], str) else ""
|
| 113 |
+
transformed_history = transform_history(chatbot)
|
| 114 |
+
|
| 115 |
+
# Crear el modelo con la instrucci贸n del sistema
|
| 116 |
+
model = genai.GenerativeModel(
|
| 117 |
+
model_name=model_choice,
|
| 118 |
+
generation_config=generation_config,
|
| 119 |
+
system_instruction=system_instruction
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
# Generar la respuesta usando la funci贸n `response`
|
| 123 |
+
bot_reply = response(text_prompt, transformed_history, model)
|
| 124 |
chatbot[-1] = (text_prompt, bot_reply)
|
| 125 |
return chatbot
|
| 126 |
|
|
|
|
| 129 |
placeholder="Enter system instruction...", show_label=True, scale=8
|
| 130 |
)
|
| 131 |
chatbot_component = gr.Chatbot(
|
| 132 |
+
label='Gemini',
|
| 133 |
bubble_full_width=False,
|
| 134 |
scale=2,
|
| 135 |
height=300
|
|
|
|
| 150 |
|
| 151 |
user_inputs = [
|
| 152 |
text_prompt_component,
|
| 153 |
+
chatbot_component
|
| 154 |
]
|
| 155 |
|
| 156 |
bot_inputs = [
|
| 157 |
upload_button_component,
|
| 158 |
model_choice_component,
|
| 159 |
system_instruction_component,
|
| 160 |
+
chatbot_component
|
| 161 |
]
|
| 162 |
|
| 163 |
# Interfaz de usuario
|