File size: 3,156 Bytes
d4c3acc
 
246f207
ceb95cf
 
 
c21a752
ceb95cf
 
 
 
 
 
 
 
52b4046
ceb95cf
d5aac08
52b4046
 
 
ceb95cf
 
 
 
 
 
 
 
 
6564a3a
ceb95cf
 
d4c3acc
246f207
 
dba19bd
d5aac08
 
f6b7865
d5aac08
f6b7865
 
d5aac08
f6b7865
 
d5aac08
 
f6b7865
d5aac08
f6b7865
d5aac08
 
 
 
a0333be
d5aac08
f6b7865
 
d5aac08
 
f6b7865
a0333be
d5aac08
a0333be
 
d5aac08
 
a0333be
d5aac08
a0333be
d5aac08
f6b7865
e14364d
 
 
 
 
 
 
 
 
ceb95cf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import os
import gradio as gr
from transformers import pipeline, DetrForObjectDetection, DetrConfig, DetrImageProcessor
import numpy as np
import cv2
from PIL import Image

def draw_detections(image, detections):
    # Convert PIL image to a numpy array
    np_image = np.array(image)
    
    # Convert RGB to BGR for OpenCV
    np_image = cv2.cvtColor(np_image, cv2.COLOR_RGB2BGR)
    
    for detection in detections:
        # Extract scores, labels, and bounding boxes properly
        score = detection['score']
        label = detection['label']
        box = detection['boxes']  # Make sure 'boxes' data structure matches expected in terms of naming and indexing
        x_min, y_min, x_max, y_max = map(int, [box[0], box[1], box[2], box[3]])
        
        cv2.rectangle(np_image, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2)
        cv2.putText(np_image, f'{label} {score:.2f}', (x_min, max(y_min - 10, 0)),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1)
    
    # Convert BGR to RGB for displaying
    final_image = cv2.cvtColor(np_image, cv2.COLOR_BGR2RGB)
    # Convert the numpy array to PIL Image
    final_pil_image = Image.fromarray(final_image)
    return final_pil_image

# Initialize objects from transformers
config = DetrConfig.from_pretrained("facebook/detr-resnet-50")
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", config=config)
image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
od_pipe = pipeline(task='object-detection', model=model, image_processor=image_processor)

def get_pipeline_prediction(pil_image):
    try:
        # Run the object detection pipeline
        pipeline_output = od_pipe(pil_image)
        
        # Draw the detection results on the image
        processed_image = draw_detections(pil_image, pipeline_output)
        
        # Provide both the image and the JSON detection results
        return processed_image, pipeline_output
    except Exception as e:
        # Log the error
        print(f"An error occurred: {str(e)}")
        # Return a message and an empty JSON
        return pil_image, {"error": str(e)}

##def get_pipeline_prediction(pil_image):
##    try:
        # Run the object detection pipeline
##        pipeline_output = od_pipe(pil_image)

        # Debugging: print the keys in the output dictionary
##        if pipeline_output:
##            print("Keys available in the detection output:", pipeline_output[0].keys())

        # Draw the detection results on the image
##        processed_image = draw_detections(pil_image, pipeline_output)
        
        # Provide both the image and the JSON detection results
##        return processed_image, pipeline_output
##    except Exception as e:
        # Log the error
#3        print(f"An error occurred: {str(e)}")
        # Return a message and an empty JSON
##        return pil_image, {"error": str(e)}
        
demo = gr.Interface(
    fn=get_pipeline_prediction,
    inputs=gr.Image(label="Input image", type="pil"),
    outputs=[
        gr.Image(label="Annotated Image"),
        gr.JSON(label="Detected Objects")
    ]
)

demo.launch()