Spaces:
Sleeping
Sleeping
File size: 3,156 Bytes
d4c3acc 246f207 ceb95cf c21a752 ceb95cf 52b4046 ceb95cf d5aac08 52b4046 ceb95cf 6564a3a ceb95cf d4c3acc 246f207 dba19bd d5aac08 f6b7865 d5aac08 f6b7865 d5aac08 f6b7865 d5aac08 f6b7865 d5aac08 f6b7865 d5aac08 a0333be d5aac08 f6b7865 d5aac08 f6b7865 a0333be d5aac08 a0333be d5aac08 a0333be d5aac08 a0333be d5aac08 f6b7865 e14364d ceb95cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import os
import gradio as gr
from transformers import pipeline, DetrForObjectDetection, DetrConfig, DetrImageProcessor
import numpy as np
import cv2
from PIL import Image
def draw_detections(image, detections):
# Convert PIL image to a numpy array
np_image = np.array(image)
# Convert RGB to BGR for OpenCV
np_image = cv2.cvtColor(np_image, cv2.COLOR_RGB2BGR)
for detection in detections:
# Extract scores, labels, and bounding boxes properly
score = detection['score']
label = detection['label']
box = detection['boxes'] # Make sure 'boxes' data structure matches expected in terms of naming and indexing
x_min, y_min, x_max, y_max = map(int, [box[0], box[1], box[2], box[3]])
cv2.rectangle(np_image, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2)
cv2.putText(np_image, f'{label} {score:.2f}', (x_min, max(y_min - 10, 0)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1)
# Convert BGR to RGB for displaying
final_image = cv2.cvtColor(np_image, cv2.COLOR_BGR2RGB)
# Convert the numpy array to PIL Image
final_pil_image = Image.fromarray(final_image)
return final_pil_image
# Initialize objects from transformers
config = DetrConfig.from_pretrained("facebook/detr-resnet-50")
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", config=config)
image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
od_pipe = pipeline(task='object-detection', model=model, image_processor=image_processor)
def get_pipeline_prediction(pil_image):
try:
# Run the object detection pipeline
pipeline_output = od_pipe(pil_image)
# Draw the detection results on the image
processed_image = draw_detections(pil_image, pipeline_output)
# Provide both the image and the JSON detection results
return processed_image, pipeline_output
except Exception as e:
# Log the error
print(f"An error occurred: {str(e)}")
# Return a message and an empty JSON
return pil_image, {"error": str(e)}
##def get_pipeline_prediction(pil_image):
## try:
# Run the object detection pipeline
## pipeline_output = od_pipe(pil_image)
# Debugging: print the keys in the output dictionary
## if pipeline_output:
## print("Keys available in the detection output:", pipeline_output[0].keys())
# Draw the detection results on the image
## processed_image = draw_detections(pil_image, pipeline_output)
# Provide both the image and the JSON detection results
## return processed_image, pipeline_output
## except Exception as e:
# Log the error
#3 print(f"An error occurred: {str(e)}")
# Return a message and an empty JSON
## return pil_image, {"error": str(e)}
demo = gr.Interface(
fn=get_pipeline_prediction,
inputs=gr.Image(label="Input image", type="pil"),
outputs=[
gr.Image(label="Annotated Image"),
gr.JSON(label="Detected Objects")
]
)
demo.launch()
|