Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -15,7 +15,7 @@ def draw_detections(image, detections):
|
|
| 15 |
for detection in detections:
|
| 16 |
# Extract scores, labels, and bounding boxes properly
|
| 17 |
score = detection['score']
|
| 18 |
-
label = detection['
|
| 19 |
box = detection['boxes'] # Make sure 'boxes' data structure matches expected in terms of naming and indexing
|
| 20 |
x_min, y_min, x_max, y_max = map(int, [box[0], box[1], box[2], box[3]])
|
| 21 |
|
|
@@ -35,40 +35,41 @@ model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", config
|
|
| 35 |
image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
| 36 |
od_pipe = pipeline(task='object-detection', model=model, image_processor=image_processor)
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
# Run the object detection pipeline
|
| 41 |
-
|
| 42 |
|
| 43 |
# Draw the detection results on the image
|
| 44 |
-
|
| 45 |
|
| 46 |
# Provide both the image and the JSON detection results
|
| 47 |
-
|
| 48 |
-
|
| 49 |
# Log the error
|
| 50 |
-
|
| 51 |
# Return a message and an empty JSON
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
|
|
|
| 55 |
# Run the object detection pipeline
|
| 56 |
-
pipeline_output = od_pipe(pil_image)
|
| 57 |
|
| 58 |
# Debugging: print the keys in the output dictionary
|
| 59 |
-
if pipeline_output:
|
| 60 |
-
print("Keys available in the detection output:", pipeline_output[0].keys())
|
| 61 |
|
| 62 |
# Draw the detection results on the image
|
| 63 |
-
processed_image = draw_detections(pil_image, pipeline_output)
|
| 64 |
|
| 65 |
# Provide both the image and the JSON detection results
|
| 66 |
-
return processed_image, pipeline_output
|
| 67 |
-
except Exception as e:
|
| 68 |
# Log the error
|
| 69 |
-
print(f"An error occurred: {str(e)}")
|
| 70 |
# Return a message and an empty JSON
|
| 71 |
-
return pil_image, {"error": str(e)}
|
| 72 |
|
| 73 |
demo = gr.Interface(
|
| 74 |
fn=get_pipeline_prediction,
|
|
|
|
| 15 |
for detection in detections:
|
| 16 |
# Extract scores, labels, and bounding boxes properly
|
| 17 |
score = detection['score']
|
| 18 |
+
label = detection['label']
|
| 19 |
box = detection['boxes'] # Make sure 'boxes' data structure matches expected in terms of naming and indexing
|
| 20 |
x_min, y_min, x_max, y_max = map(int, [box[0], box[1], box[2], box[3]])
|
| 21 |
|
|
|
|
| 35 |
image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
| 36 |
od_pipe = pipeline(task='object-detection', model=model, image_processor=image_processor)
|
| 37 |
|
| 38 |
+
def get_pipeline_prediction(pil_image):
|
| 39 |
+
try:
|
| 40 |
# Run the object detection pipeline
|
| 41 |
+
pipeline_output = od_pipe(pil_image)
|
| 42 |
|
| 43 |
# Draw the detection results on the image
|
| 44 |
+
processed_image = draw_detections(pil_image, pipeline_output)
|
| 45 |
|
| 46 |
# Provide both the image and the JSON detection results
|
| 47 |
+
return processed_image, pipeline_output
|
| 48 |
+
except Exception as e:
|
| 49 |
# Log the error
|
| 50 |
+
print(f"An error occurred: {str(e)}")
|
| 51 |
# Return a message and an empty JSON
|
| 52 |
+
return pil_image, {"error": str(e)}
|
| 53 |
+
|
| 54 |
+
##def get_pipeline_prediction(pil_image):
|
| 55 |
+
## try:
|
| 56 |
# Run the object detection pipeline
|
| 57 |
+
## pipeline_output = od_pipe(pil_image)
|
| 58 |
|
| 59 |
# Debugging: print the keys in the output dictionary
|
| 60 |
+
## if pipeline_output:
|
| 61 |
+
## print("Keys available in the detection output:", pipeline_output[0].keys())
|
| 62 |
|
| 63 |
# Draw the detection results on the image
|
| 64 |
+
## processed_image = draw_detections(pil_image, pipeline_output)
|
| 65 |
|
| 66 |
# Provide both the image and the JSON detection results
|
| 67 |
+
## return processed_image, pipeline_output
|
| 68 |
+
## except Exception as e:
|
| 69 |
# Log the error
|
| 70 |
+
#3 print(f"An error occurred: {str(e)}")
|
| 71 |
# Return a message and an empty JSON
|
| 72 |
+
## return pil_image, {"error": str(e)}
|
| 73 |
|
| 74 |
demo = gr.Interface(
|
| 75 |
fn=get_pipeline_prediction,
|