Gabolozano commited on
Commit
f6b7865
·
verified ·
1 Parent(s): 52b4046

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -2
app.py CHANGED
@@ -35,11 +35,30 @@ model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", config
35
  image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
36
  od_pipe = pipeline(task='object-detection', model=model, image_processor=image_processor)
37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
  def get_pipeline_prediction(pil_image):
39
  try:
40
  # Run the object detection pipeline
41
  pipeline_output = od_pipe(pil_image)
42
-
 
 
 
 
43
  # Draw the detection results on the image
44
  processed_image = draw_detections(pil_image, pipeline_output)
45
 
@@ -50,7 +69,7 @@ def get_pipeline_prediction(pil_image):
50
  print(f"An error occurred: {str(e)}")
51
  # Return a message and an empty JSON
52
  return pil_image, {"error": str(e)}
53
-
54
  demo = gr.Interface(
55
  fn=get_pipeline_prediction,
56
  inputs=gr.Image(label="Input image", type="pil"),
 
35
  image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
36
  od_pipe = pipeline(task='object-detection', model=model, image_processor=image_processor)
37
 
38
+ ##def get_pipeline_prediction(pil_image):
39
+ ## try:
40
+ # Run the object detection pipeline
41
+ ## pipeline_output = od_pipe(pil_image)
42
+
43
+ # Draw the detection results on the image
44
+ ## processed_image = draw_detections(pil_image, pipeline_output)
45
+
46
+ # Provide both the image and the JSON detection results
47
+ ## return processed_image, pipeline_output
48
+ ## except Exception as e:
49
+ # Log the error
50
+ ## print(f"An error occurred: {str(e)}")
51
+ # Return a message and an empty JSON
52
+ ## return pil_image, {"error": str(e)}
53
  def get_pipeline_prediction(pil_image):
54
  try:
55
  # Run the object detection pipeline
56
  pipeline_output = od_pipe(pil_image)
57
+
58
+ # Debugging: print the keys in the output dictionary
59
+ if pipeline_output:
60
+ print("Keys available in the detection output:", pipeline_output[0].keys())
61
+
62
  # Draw the detection results on the image
63
  processed_image = draw_detections(pil_image, pipeline_output)
64
 
 
69
  print(f"An error occurred: {str(e)}")
70
  # Return a message and an empty JSON
71
  return pil_image, {"error": str(e)}
72
+
73
  demo = gr.Interface(
74
  fn=get_pipeline_prediction,
75
  inputs=gr.Image(label="Input image", type="pil"),