Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
|
| 2 |
import os
|
| 3 |
import gradio as gr
|
| 4 |
from transformers import pipeline, DetrForObjectDetection, DetrConfig, DetrImageProcessor
|
|
@@ -35,25 +34,6 @@ model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", config
|
|
| 35 |
image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
| 36 |
od_pipe = pipeline(task='object-detection', model=model, image_processor=image_processor)
|
| 37 |
|
| 38 |
-
def get_pipeline_prediction(pil_image):
|
| 39 |
-
# Run the object detection pipeline
|
| 40 |
-
pipeline_output = od_pipe(pil_image)
|
| 41 |
-
|
| 42 |
-
# Draw the detection results on the image
|
| 43 |
-
processed_image = draw_detections(pil_image, pipeline_output)
|
| 44 |
-
|
| 45 |
-
# Provide both the image and the JSON detection results
|
| 46 |
-
return processed_image, pipeline_output
|
| 47 |
-
|
| 48 |
-
demo = gr.Interface(
|
| 49 |
-
fn=get_pipeline_prediction,
|
| 50 |
-
inputs=gr.Image(label="Input image", type="pil"),
|
| 51 |
-
outputs=[
|
| 52 |
-
gr.Image(label="Annotated Image"),
|
| 53 |
-
gr.JSON(label="Detected Objects")
|
| 54 |
-
]
|
| 55 |
-
)
|
| 56 |
-
|
| 57 |
def get_pipeline_prediction(pil_image):
|
| 58 |
try:
|
| 59 |
# Run the object detection pipeline
|
|
@@ -69,5 +49,14 @@ def get_pipeline_prediction(pil_image):
|
|
| 69 |
print(f"An error occurred: {str(e)}")
|
| 70 |
# Return a message and an empty JSON
|
| 71 |
return pil_image, {"error": str(e)}
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
demo.launch()
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
from transformers import pipeline, DetrForObjectDetection, DetrConfig, DetrImageProcessor
|
|
|
|
| 34 |
image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
| 35 |
od_pipe = pipeline(task='object-detection', model=model, image_processor=image_processor)
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
def get_pipeline_prediction(pil_image):
|
| 38 |
try:
|
| 39 |
# Run the object detection pipeline
|
|
|
|
| 49 |
print(f"An error occurred: {str(e)}")
|
| 50 |
# Return a message and an empty JSON
|
| 51 |
return pil_image, {"error": str(e)}
|
| 52 |
+
|
| 53 |
+
demo = gr.Interface(
|
| 54 |
+
fn=get_pipeline_prediction,
|
| 55 |
+
inputs=gr.Image(label="Input image", type="pil"),
|
| 56 |
+
outputs=[
|
| 57 |
+
gr.Image(label="Annotated Image"),
|
| 58 |
+
gr.JSON(label="Detected Objects")
|
| 59 |
+
]
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
demo.launch()
|