Spaces:
Sleeping
Sleeping
File size: 13,430 Bytes
e522499 cdf0803 79f26df cdf0803 79f26df cdf0803 15c01f8 79f26df cdf0803 1ce52fb cdf0803 15c01f8 cdf0803 79f26df cdf0803 01ac828 cdf0803 01ac828 cdf0803 15c01f8 cdf0803 79f26df cdf0803 15c01f8 79f26df 707779e 79f26df 707779e 79f26df cdf0803 79f26df 707779e 67ed9d6 707779e 67ed9d6 707779e f9efdb9 67ed9d6 f9efdb9 67ed9d6 f9efdb9 67ed9d6 79f26df cdf0803 f9efdb9 67ed9d6 cdf0803 a1d5478 cdf0803 79f26df cdf0803 79f26df cdf0803 67ed9d6 f9efdb9 67ed9d6 cdf0803 67ed9d6 cdf0803 79f26df cdf0803 67ed9d6 15c01f8 79f26df cdf0803 e522499 cdf0803 67ed9d6 79f26df 707779e 79f26df 67ed9d6 79f26df 67ed9d6 707779e 79f26df 67ed9d6 707779e 79f26df 67ed9d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import streamlit as st
import pandas as pd
import numpy as np
import requests
import time
from collections import defaultdict
# Set page layout to wide mode and set page title
st.set_page_config(layout="wide", page_title="影城效率与内容分析工具")
# --- Efficiency Analysis Functions ---
def clean_movie_title(title):
if not isinstance(title, str):
return title
return title.split(' ', 1)[0]
def style_efficiency(row):
green = 'background-color: #E6F5E6;' # Light Green
red = 'background-color: #FFE5E5;' # Light Red
default = ''
styles = [default] * len(row)
seat_efficiency = row.get('座次效率', 0)
session_efficiency = row.get('场次效率', 0)
if seat_efficiency > 1.5 or session_efficiency > 1.5:
styles = [green] * len(row)
elif seat_efficiency < 0.5 or session_efficiency < 0.5:
styles = [red] * len(row)
return styles
def process_and_analyze_data(df):
if df.empty:
return pd.DataFrame()
analysis_df = df.groupby('影片名称_清理后').agg(
座位数=('座位数', 'sum'),
场次=('影片名称_清理后', 'size'),
票房=('总收入', 'sum'),
人次=('总人次', 'sum')
).reset_index()
analysis_df.rename(columns={'影片名称_清理后': '影片'}, inplace=True)
analysis_df = analysis_df.sort_values(by='票房', ascending=False).reset_index(drop=True)
total_seats = analysis_df['座位数'].sum()
total_sessions = analysis_df['场次'].sum()
total_revenue = analysis_df['票房'].sum()
analysis_df['均价'] = np.divide(analysis_df['票房'], analysis_df['人次']).fillna(0)
analysis_df['座次比'] = np.divide(analysis_df['座位数'], total_seats).fillna(0)
analysis_df['场次比'] = np.divide(analysis_df['场次'], total_sessions).fillna(0)
analysis_df['票房比'] = np.divide(analysis_df['票房'], total_revenue).fillna(0)
analysis_df['座次效率'] = np.divide(analysis_df['票房比'], analysis_df['座次比']).fillna(0)
analysis_df['场次效率'] = np.divide(analysis_df['票房比'], analysis_df['场次比']).fillna(0)
final_columns = ['影片', '座位数', '场次', '票房', '人次', '均价', '座次比', '场次比', '票房比', '座次效率',
'场次效率']
analysis_df = analysis_df[final_columns]
return analysis_df
# --- New Feature: Server Movie Content Inquiry ---
@st.cache_data(show_spinner=False)
def fetch_and_process_server_movies(priority_movie_titles=None):
if priority_movie_titles is None:
priority_movie_titles = []
# 1. Get Token
token_headers = {
'Host': 'oa.hengdianfilm.com:7080', 'Content-Type': 'application/json',
'Origin': 'http://115.239.253.233:7080', 'Connection': 'keep-alive',
'Accept': 'application/json, text/javascript, */*; q=0.01',
'User-Agent': 'Mozilla/5.0 (iPhone; CPU iPhone OS 18_5_0 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) CriOS/138.0.7204.156 Mobile/15E148 Safari/604.1',
'Accept-Language': 'zh-CN,zh-Hans;q=0.9',
}
token_json_data = {'appId': 'hd', 'appSecret': 'ad761f8578cc6170', 'timeStamp': int(time.time() * 1000)}
token_url = 'http://oa.hengdianfilm.com:7080/cinema-api/admin/generateToken?token=hd&murl=?token=hd&murl=ticket=-1495916529737643774'
response = requests.post(token_url, headers=token_headers, json=token_json_data, timeout=10)
response.raise_for_status()
token_data = response.json()
if token_data.get('error_code') != '0000':
raise Exception(f"获取Token失败: {token_data.get('error_desc')}")
auth_token = token_data['param']
# 2. Fetch movie list (with pagination and delay)
all_movies = []
page_index = 1
while True:
list_headers = {
'Accept': 'application/json, text/javascript, */*; q=0.01',
'Content-Type': 'application/json; charset=UTF-8',
'Origin': 'http://115.239.253.233:7080', 'Proxy-Connection': 'keep-alive', 'Token': auth_token,
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/138.0.0.0 Safari/537.36',
'X-SESSIONID': 'PQ0J3K85GJEDVYIGZE1KEG1K80USDAP4',
}
list_params = {'token': 'hd', 'murl': 'ContentMovie'}
list_json_data = {'THEATER_ID': 38205954, 'SOURCE': 'SERVER', 'ASSERT_TYPE': 2, 'PAGE_CAPACITY': 20,
'PAGE_INDEX': page_index}
list_url = 'http://oa.hengdianfilm.com:7080/cinema-api/cinema/server/dcp/list'
response = requests.post(list_url, params=list_params, headers=list_headers, json=list_json_data, verify=False)
response.raise_for_status()
movie_data = response.json()
if movie_data.get("RSPCD") != "000000":
raise Exception(f"获取影片列表失败: {movie_data.get('RSPMSG')}")
body = movie_data.get("BODY", {})
movies_on_page = body.get("LIST", [])
if not movies_on_page: break
all_movies.extend(movies_on_page)
if len(all_movies) >= body.get("COUNT", 0): break
page_index += 1
time.sleep(1) # Add 1-second delay between requests
# 3. Process data into a central, detailed structure
movie_details = {}
for movie in all_movies:
content_name = movie.get('CONTENT_NAME')
if not content_name: continue
movie_details[content_name] = {
'assert_name': movie.get('ASSERT_NAME'),
'halls': sorted([h.get('HALL_NAME') for h in movie.get('HALL_INFO', [])]),
'play_time': movie.get('PLAY_TIME')
}
# 4. Prepare data for the two display views
by_hall = defaultdict(list)
for content_name, details in movie_details.items():
for hall_name in details['halls']:
by_hall[hall_name].append({'content_name': content_name, 'details': details})
for hall_name in by_hall:
by_hall[hall_name].sort(key=lambda item: (
item['details']['assert_name'] is None or item['details']['assert_name'] == '',
item['details']['assert_name'] or item['content_name']
))
view2_list = []
for content_name, details in movie_details.items():
if details.get('assert_name'):
view2_list.append({
'assert_name': details['assert_name'],
'content_name': content_name,
'halls': details['halls'],
'play_time': details['play_time']
})
priority_list = [item for item in view2_list if
any(p_title in item['assert_name'] for p_title in priority_movie_titles)]
other_list_items = [item for item in view2_list if item not in priority_list]
priority_list.sort(key=lambda x: x['assert_name'])
other_list_items.sort(key=lambda x: x['assert_name'])
final_sorted_list = priority_list + other_list_items
return dict(sorted(by_hall.items())), final_sorted_list
def get_circled_number(hall_name):
mapping = {'1': '①', '2': '②', '3': '③', '4': '④', '5': '⑤', '6': '⑥', '7': '⑦', '8': '⑧', '9': '⑨'}
num_str = ''.join(filter(str.isdigit, hall_name))
return mapping.get(num_str, '')
def format_play_time(time_str):
if not time_str or not isinstance(time_str, str): return None
try:
parts = time_str.split(':');
hours = int(parts[0]);
minutes = int(parts[1])
return hours * 60 + minutes
except (ValueError, IndexError):
return None
# --- NEW Helper function to add TMS location column ---
def add_tms_locations_to_analysis(analysis_df, tms_movie_list):
locations = []
for index, row in analysis_df.iterrows():
movie_title = row['影片']
found_versions = []
for tms_movie in tms_movie_list:
if movie_title in tms_movie['assert_name']:
# Extract version name by removing the base title
version_name = tms_movie['assert_name'].replace(movie_title, '').strip()
circled_halls = " ".join(sorted([get_circled_number(h) for h in tms_movie['halls']]))
found_versions.append(f"{version_name}:{circled_halls}")
locations.append('|'.join(found_versions))
analysis_df['影片所在影厅位置'] = locations
return analysis_df
# --- Streamlit Main UI ---
st.title('影城排片效率与内容分析工具')
st.write("上传 `影片映出日累计报表.xlsx` 进行效率分析,或点击下方按钮查询 TMS 服务器影片内容。")
uploaded_file = st.file_uploader("请在此处上传 Excel 文件", type=['xlsx', 'xls', 'csv'])
# NEW: Checkbox for the new feature
query_tms_for_location = st.checkbox("查询 TMS 找影片所在影厅")
if uploaded_file is not None:
try:
df = pd.read_excel(uploaded_file, skiprows=3, header=None)
df.rename(columns={0: '影片名称', 2: '放映时间', 5: '总人次', 6: '总收入', 7: '座位数'}, inplace=True)
required_cols = ['影片名称', '放映时间', '座位数', '总收入', '总人次']
df = df[required_cols]
df.dropna(subset=['影片名称', '放映时间'], inplace=True)
for col in ['座位数', '总收入', '总人次']:
df[col] = pd.to_numeric(df[col], errors='coerce').fillna(0)
df['放映时间'] = pd.to_datetime(df['放映时间'], format='%H:%M:%S', errors='coerce').dt.time
df.dropna(subset=['放映时间'], inplace=True)
df['影片名称_清理后'] = df['影片名称'].apply(clean_movie_title)
st.toast("文件上传成功,效率分析已生成!", icon="🎉")
format_config = {'座位数': '{:,.0f}', '场次': '{:,.0f}', '人次': '{:,.0f}', '票房': '{:,.2f}', '均价': '{:.2f}',
'座次比': '{:.2%}', '场次比': '{:.2%}', '票房比': '{:.2%}', '座次效率': '{:.2f}',
'场次效率': '{:.2f}'}
full_day_analysis = process_and_analyze_data(df.copy())
prime_time_analysis = process_and_analyze_data(
df[df['放映时间'].between(pd.to_datetime('14:00:00').time(), pd.to_datetime('21:00:00').time())].copy())
# --- NEW LOGIC: If checkbox is ticked, fetch data and modify dataframes ---
if query_tms_for_location:
with st.spinner("正在关联查询 TMS 服务器..."):
_, tms_movie_list = fetch_and_process_server_movies()
full_day_analysis = add_tms_locations_to_analysis(full_day_analysis, tms_movie_list)
prime_time_analysis = add_tms_locations_to_analysis(prime_time_analysis, tms_movie_list)
st.toast("TMS 影片位置关联成功!", icon="🔗")
st.markdown("### 全天排片效率分析")
if not full_day_analysis.empty:
st.dataframe(
full_day_analysis.style.format(format_config),
use_container_width=True, hide_index=True)
st.markdown("#### 黄金时段排片效率分析 (14:00-21:00)")
if not prime_time_analysis.empty:
st.dataframe(
prime_time_analysis.style.format(format_config),
use_container_width=True, hide_index=True)
if not full_day_analysis.empty:
st.markdown("##### 复制当日排片列表")
movie_titles = full_day_analysis['影片'].tolist()
formatted_titles = ''.join([f'《{title}》' for title in movie_titles])
st.code(formatted_titles, language='text')
except Exception as e:
st.error(f"处理文件时出错: {e}")
st.divider()
st.markdown("### TMS 服务器影片内容查询")
if st.button('点击查询 TMS 服务器'):
with st.spinner("正在从 TMS 服务器获取数据中..."):
try:
halls_data, movie_list_sorted = fetch_and_process_server_movies()
st.toast("TMS 服务器数据获取成功!", icon="🎉")
st.markdown("#### 按影片查看所在影厅")
view2_data = [{'影片名称': item['assert_name'],
'所在影厅': " ".join(sorted([get_circled_number(h) for h in item['halls']])),
'文件名': item['content_name'], '时长': format_play_time(item['play_time'])} for item in
movie_list_sorted]
df_view2 = pd.DataFrame(view2_data)
st.dataframe(df_view2, hide_index=True, use_container_width=True)
st.markdown("#### 按影厅查看影片内容")
hall_tabs = st.tabs(halls_data.keys())
for tab, hall_name in zip(hall_tabs, halls_data.keys()):
with tab:
view1_data_for_tab = [{'影片名称': item['details']['assert_name'], '所在影厅': " ".join(
sorted([get_circled_number(h) for h in item['details']['halls']])),
'文件名': item['content_name'],
'时长': format_play_time(item['details']['play_time'])} for item in
halls_data[hall_name]]
df_view1_tab = pd.DataFrame(view1_data_for_tab)
st.dataframe(df_view1_tab, hide_index=True, use_container_width=True)
except Exception as e:
st.error(f"查询服务器时出错: {e}") |