Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,429 +1,165 @@
|
|
| 1 |
-
import pandas as pd
|
| 2 |
import streamlit as st
|
| 3 |
-
import
|
| 4 |
-
import
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
"""
|
| 47 |
-
if
|
| 48 |
-
return
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
try:
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
-
try:
|
| 78 |
-
df = pd.read_excel(file, header=9, usecols=[1, 2, 4, 5])
|
| 79 |
-
df.columns = ['Hall', 'StartTime', 'EndTime', 'Movie']
|
| 80 |
-
df['Hall'] = df['Hall'].ffill()
|
| 81 |
-
df.dropna(subset=['StartTime', 'EndTime', 'Movie'], inplace=True)
|
| 82 |
-
df['Hall'] = df['Hall'].astype(str).str.extract(r'(\d+号)')
|
| 83 |
-
df['StartTime_dt'] = pd.to_datetime(df['StartTime'], format='%H:%M', errors='coerce').apply(
|
| 84 |
-
lambda t: t.replace(year=base_date.year, month=base_date.month, day=base_date.day) if pd.notnull(t) else t)
|
| 85 |
-
df['EndTime_dt'] = pd.to_datetime(df['EndTime'], format='%H:%M', errors='coerce').apply(
|
| 86 |
-
lambda t: t.replace(year=base_date.year, month=base_date.month, day=base_date.day) if pd.notnull(t) else t)
|
| 87 |
-
df.loc[df['EndTime_dt'] < df['StartTime_dt'], 'EndTime_dt'] += timedelta(days=1)
|
| 88 |
-
df = df.sort_values(['Hall', 'StartTime_dt'])
|
| 89 |
-
merged_rows = []
|
| 90 |
-
for _, group in df.groupby('Hall'):
|
| 91 |
-
current = None
|
| 92 |
-
for _, row in group.sort_values('StartTime_dt').iterrows():
|
| 93 |
-
if current is None:
|
| 94 |
-
current = row.copy()
|
| 95 |
-
elif row['Movie'] == current['Movie']:
|
| 96 |
-
current['EndTime_dt'] = row['EndTime_dt']
|
| 97 |
-
else:
|
| 98 |
-
merged_rows.append(current)
|
| 99 |
-
current = row.copy()
|
| 100 |
-
if current is not None:
|
| 101 |
-
merged_rows.append(current)
|
| 102 |
-
merged_df = pd.DataFrame(merged_rows)
|
| 103 |
-
merged_df['StartTime_dt'] -= timedelta(minutes=10)
|
| 104 |
-
merged_df['EndTime_dt'] -= timedelta(minutes=5)
|
| 105 |
-
merged_df['Seq'] = merged_df.groupby('Hall').cumcount() + 1
|
| 106 |
-
merged_df['StartTime_str'] = merged_df['StartTime_dt'].dt.strftime('%H:%M')
|
| 107 |
-
merged_df['EndTime_str'] = merged_df['EndTime_dt'].dt.strftime('%H:%M')
|
| 108 |
-
return merged_df[['Hall', 'Seq', 'Movie', 'StartTime_str', 'EndTime_str']], date_str
|
| 109 |
-
except Exception as e:
|
| 110 |
-
st.error(f"处理数据出错: {e}。请检查文件格式是否正确。")
|
| 111 |
-
return None, date_str
|
| 112 |
-
|
| 113 |
-
def create_print_layout_led(data, date_str):
|
| 114 |
-
"""为 '放映时间核对表' 生成打印布局 (使用 Regular 字体)"""
|
| 115 |
-
if data is None or data.empty:
|
| 116 |
-
return None
|
| 117 |
-
A4_width_in, A4_height_in = 8.27, 11.69
|
| 118 |
-
dpi = 300
|
| 119 |
-
total_content_rows = len(data)
|
| 120 |
-
|
| 121 |
-
# --- 已修改部分:如果数据条数小于25条,则按25条计算行高以防止字体过大 ---
|
| 122 |
-
layout_rows = max(total_content_rows, 25)
|
| 123 |
-
totalA = layout_rows + 2
|
| 124 |
-
# --- 修改结束 ---
|
| 125 |
-
|
| 126 |
-
row_height = A4_height_in / totalA
|
| 127 |
-
data = data.reset_index(drop=True)
|
| 128 |
-
data['hall_str'] = '$' + data['Hall'].str.replace('号', '') + '^{\#}$'
|
| 129 |
-
data['seq_str'] = data['Seq'].apply(format_seq)
|
| 130 |
-
data['pinyin_abbr'] = data['Movie'].apply(get_pinyin_abbr)
|
| 131 |
-
data['time_str'] = data['StartTime_str'] + ' - ' + data['EndTime_str']
|
| 132 |
-
|
| 133 |
-
temp_fig = plt.figure(figsize=(A4_width_in, A4_height_in), dpi=dpi)
|
| 134 |
-
renderer = temp_fig.canvas.get_renderer()
|
| 135 |
-
base_font_size_pt = (row_height * 0.9) * 72
|
| 136 |
-
seq_font_size_pt = (row_height * 0.5) * 72
|
| 137 |
-
|
| 138 |
-
def get_col_width_in(series, font_size_pt, is_math=False):
|
| 139 |
-
if series.empty: return 0
|
| 140 |
-
font_prop = get_font_regular(font_size_pt) # 使用 Regular 字体
|
| 141 |
-
longest_str_idx = series.astype(str).str.len().idxmax()
|
| 142 |
-
max_content = str(series.loc[longest_str_idx])
|
| 143 |
-
text_width_px, _, _ = renderer.get_text_width_height_descent(max_content, font_prop, ismath=is_math)
|
| 144 |
-
return (text_width_px / dpi) * 1.1
|
| 145 |
-
|
| 146 |
-
margin_col_width = row_height
|
| 147 |
-
hall_col_width = get_col_width_in(data['hall_str'], base_font_size_pt, is_math=True)
|
| 148 |
-
seq_col_width = get_col_width_in(data['seq_str'], seq_font_size_pt)
|
| 149 |
-
pinyin_col_width = get_col_width_in(data['pinyin_abbr'], base_font_size_pt)
|
| 150 |
-
time_col_width = get_col_width_in(data['time_str'], base_font_size_pt)
|
| 151 |
-
movie_col_width = A4_width_in - (
|
| 152 |
-
margin_col_width * 2 + hall_col_width + seq_col_width + pinyin_col_width + time_col_width)
|
| 153 |
-
plt.close(temp_fig)
|
| 154 |
-
|
| 155 |
-
col_widths = {'hall': hall_col_width, 'seq': seq_col_width, 'movie': movie_col_width, 'pinyin': pinyin_col_width,
|
| 156 |
-
'time': time_col_width}
|
| 157 |
-
col_x_starts = {}
|
| 158 |
-
current_x = margin_col_width
|
| 159 |
-
for col_name in ['hall', 'seq', 'movie', 'pinyin', 'time']:
|
| 160 |
-
col_x_starts[col_name] = current_x
|
| 161 |
-
current_x += col_widths[col_name]
|
| 162 |
-
|
| 163 |
-
def draw_figure(fig, ax):
|
| 164 |
-
renderer = fig.canvas.get_renderer()
|
| 165 |
-
for col_name in ['hall', 'seq', 'movie', 'pinyin']:
|
| 166 |
-
x_line = col_x_starts[col_name] + col_widths[col_name]
|
| 167 |
-
line_top_y, line_bottom_y = A4_height_in - row_height, row_height
|
| 168 |
-
ax.add_line(Line2D([x_line, x_line], [line_bottom_y, line_top_y], color='gray', linestyle=':', linewidth=0.5))
|
| 169 |
-
|
| 170 |
-
last_hall_drawn = None
|
| 171 |
-
for i, row in data.iterrows():
|
| 172 |
-
y_bottom = A4_height_in - (i + 2) * row_height
|
| 173 |
-
y_center = y_bottom + row_height / 2
|
| 174 |
-
|
| 175 |
-
if row['Hall'] != last_hall_drawn:
|
| 176 |
-
ax.text(col_x_starts['hall'] + col_widths['hall'] / 2, y_center, row['hall_str'],
|
| 177 |
-
fontproperties=get_font_regular(base_font_size_pt), ha='center', va='center')
|
| 178 |
-
last_hall_drawn = row['Hall']
|
| 179 |
-
|
| 180 |
-
ax.text(col_x_starts['seq'] + col_widths['seq'] / 2, y_center, row['seq_str'],
|
| 181 |
-
fontproperties=get_font_regular(seq_font_size_pt), ha='center', va='center')
|
| 182 |
-
ax.text(col_x_starts['pinyin'] + col_widths['pinyin'] / 2, y_center, row['pinyin_abbr'],
|
| 183 |
-
fontproperties=get_font_regular(base_font_size_pt), ha='center', va='center')
|
| 184 |
-
ax.text(col_x_starts['time'] + col_widths['time'] / 2, y_center, row['time_str'],
|
| 185 |
-
fontproperties=get_font_regular(base_font_size_pt), ha='center', va='center')
|
| 186 |
-
|
| 187 |
-
movie_font_size = base_font_size_pt
|
| 188 |
-
movie_font_prop = get_font_regular(movie_font_size)
|
| 189 |
-
text_w_px, _, _ = renderer.get_text_width_height_descent(row['Movie'], movie_font_prop, ismath=False)
|
| 190 |
-
text_w_in = text_w_px / dpi
|
| 191 |
-
max_width_in = col_widths['movie'] * 0.9
|
| 192 |
-
|
| 193 |
-
if text_w_in > max_width_in:
|
| 194 |
-
movie_font_size *= (max_width_in / text_w_in)
|
| 195 |
-
movie_font_prop = get_font_regular(movie_font_size)
|
| 196 |
-
|
| 197 |
-
ax.text(col_x_starts['movie'] + 0.05, y_center, row['Movie'], fontproperties=movie_font_prop, ha='left', va='center')
|
| 198 |
-
|
| 199 |
-
is_last_in_hall = (i == len(data) - 1) or (row['Hall'] != data.loc[i + 1, 'Hall'])
|
| 200 |
-
line_start_x = margin_col_width
|
| 201 |
-
line_end_x = A4_width_in - margin_col_width
|
| 202 |
-
if is_last_in_hall:
|
| 203 |
-
ax.add_line(Line2D([line_start_x, line_end_x], [y_bottom, y_bottom], color='black', linestyle='-', linewidth=0.8))
|
| 204 |
-
else:
|
| 205 |
-
ax.add_line(Line2D([line_start_x, line_end_x], [y_bottom, y_bottom], color='gray', linestyle=':', linewidth=0.5))
|
| 206 |
-
|
| 207 |
-
outputs = {}
|
| 208 |
-
for format_type in ['png', 'pdf']:
|
| 209 |
-
fig = plt.figure(figsize=(A4_width_in, A4_height_in), dpi=dpi)
|
| 210 |
-
ax = fig.add_axes([0, 0, 1, 1])
|
| 211 |
-
ax.set_axis_off()
|
| 212 |
-
ax.set_xlim(0, A4_width_in)
|
| 213 |
-
ax.set_ylim(0, A4_height_in)
|
| 214 |
-
ax.text(margin_col_width, A4_height_in - (row_height / 2), date_str,
|
| 215 |
-
fontproperties=get_font_regular(10), color='#A9A9A9', ha='left', va='center')
|
| 216 |
-
|
| 217 |
-
draw_figure(fig, ax)
|
| 218 |
-
|
| 219 |
-
buf = io.BytesIO()
|
| 220 |
-
fig.savefig(buf, format=format_type, dpi=dpi, bbox_inches='tight', pad_inches=0)
|
| 221 |
-
buf.seek(0)
|
| 222 |
-
data_uri = base64.b64encode(buf.getvalue()).decode()
|
| 223 |
-
mime_type = 'image/png' if format_type == 'png' else 'application/pdf'
|
| 224 |
-
outputs[format_type] = f"data:{mime_type};base64,{data_uri}"
|
| 225 |
-
plt.close(fig)
|
| 226 |
-
|
| 227 |
-
return outputs
|
| 228 |
-
|
| 229 |
-
# --- '放映场次核对表' 处理函数 ---
|
| 230 |
-
def process_schedule_times(file):
|
| 231 |
-
"""处理 '放映场次核对表.xls' 文件"""
|
| 232 |
-
try:
|
| 233 |
-
df = pd.read_excel(file, skiprows=8)
|
| 234 |
-
df = df.iloc[:, [6, 7, 9]]
|
| 235 |
-
df.columns = ['Hall', 'StartTime', 'EndTime']
|
| 236 |
-
df = df.dropna(subset=['Hall', 'StartTime', 'EndTime'])
|
| 237 |
-
df['Hall'] = df['Hall'].str.extract(r'(\d+)号').astype(str) + ' '
|
| 238 |
-
base_date = datetime.today().date()
|
| 239 |
-
df['StartTime'] = pd.to_datetime(df['StartTime'])
|
| 240 |
-
df['EndTime'] = pd.to_datetime(df['EndTime'])
|
| 241 |
-
|
| 242 |
-
business_start = datetime.strptime(f"{base_date} {BUSINESS_START}", "%Y-%m-%d %H:%M")
|
| 243 |
-
business_end = datetime.strptime(f"{base_date} {BUSINESS_END}", "%Y-%m-%d %H:%M")
|
| 244 |
-
if business_end < business_start:
|
| 245 |
-
business_end += timedelta(days=1)
|
| 246 |
-
|
| 247 |
-
for idx, row in df.iterrows():
|
| 248 |
-
end_time = row['EndTime']
|
| 249 |
-
if end_time.hour < 9:
|
| 250 |
-
df.at[idx, 'EndTime'] = end_time + timedelta(days=1)
|
| 251 |
-
if row['StartTime'].hour >= 21 and end_time.hour < 9:
|
| 252 |
-
df.at[idx, 'EndTime'] = end_time + timedelta(days=1)
|
| 253 |
-
|
| 254 |
-
df['time_for_comparison'] = df['EndTime'].apply(lambda x: datetime.combine(base_date, x.time()))
|
| 255 |
-
df.loc[df['time_for_comparison'].dt.hour < 9, 'time_for_comparison'] += timedelta(days=1)
|
| 256 |
-
|
| 257 |
-
valid_times = (((df['time_for_comparison'] >= datetime.combine(base_date, business_start.time())) &
|
| 258 |
-
(df['time_for_comparison'] <= datetime.combine(base_date + timedelta(days=1), business_end.time()))))
|
| 259 |
-
df = df[valid_times]
|
| 260 |
-
|
| 261 |
-
df = df.sort_values('EndTime')
|
| 262 |
-
split_time = datetime.strptime(f"{base_date} {SPLIT_TIME}", "%Y-%m-%d %H:%M")
|
| 263 |
-
split_time_for_comparison = df['time_for_comparison'].apply(lambda x: datetime.combine(base_date, split_time.time()))
|
| 264 |
-
|
| 265 |
-
part1 = df[df['time_for_comparison'] <= split_time_for_comparison].copy()
|
| 266 |
-
part2 = df[df['time_for_comparison'] > split_time_for_comparison].copy()
|
| 267 |
-
|
| 268 |
-
for part in [part1, part2]:
|
| 269 |
-
part['EndTime'] = part['EndTime'].dt.strftime('%-H:%M')
|
| 270 |
-
|
| 271 |
-
date_df = pd.read_excel(file, skiprows=5, nrows=1, usecols=[2], header=None)
|
| 272 |
-
date_cell = date_df.iloc[0, 0]
|
| 273 |
-
try:
|
| 274 |
-
if isinstance(date_cell, str):
|
| 275 |
-
date_str = datetime.strptime(date_cell, '%Y-%m-%d').strftime('%Y-%m-%d')
|
| 276 |
-
else:
|
| 277 |
-
date_str = pd.to_datetime(date_cell).strftime('%Y-%m-%d')
|
| 278 |
-
except:
|
| 279 |
-
date_str = datetime.today().strftime('%Y-%m-%d')
|
| 280 |
-
|
| 281 |
-
return part1[['Hall', 'EndTime']], part2[['Hall', 'EndTime']], date_str
|
| 282 |
except Exception as e:
|
| 283 |
-
st.error(f"
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
""
|
| 288 |
-
if data.empty:
|
| 289 |
-
return None
|
| 290 |
-
|
| 291 |
-
def generate_figure():
|
| 292 |
-
total_items = len(data)
|
| 293 |
-
num_rows = math.ceil(total_items / NUM_COLS) if total_items > 0 else 1
|
| 294 |
-
date_header_height_in = 0.3
|
| 295 |
-
data_area_height_in = A5_HEIGHT_IN - date_header_height_in
|
| 296 |
-
cell_width_in = A5_WIDTH_IN / NUM_COLS
|
| 297 |
-
cell_height_in = data_area_height_in / num_rows
|
| 298 |
-
cell_width_pt = cell_width_in * 72
|
| 299 |
-
cell_height_pt = cell_height_in * 72
|
| 300 |
-
target_text_width_pt = cell_width_pt * 0.9
|
| 301 |
-
fontsize_from_width = target_text_width_pt / (8 * 0.6)
|
| 302 |
-
fontsize_from_height = cell_height_pt * 0.8
|
| 303 |
-
base_fontsize = min(fontsize_from_width, fontsize_from_height)
|
| 304 |
-
|
| 305 |
-
fig = plt.figure(figsize=(A5_WIDTH_IN, A5_HEIGHT_IN), dpi=300)
|
| 306 |
-
fig.subplots_adjust(left=0, right=1, top=1, bottom=0)
|
| 307 |
-
|
| 308 |
-
gs = gridspec.GridSpec(
|
| 309 |
-
num_rows + 1, NUM_COLS,
|
| 310 |
-
hspace=0, wspace=0,
|
| 311 |
-
height_ratios=[date_header_height_in] + [cell_height_in] * num_rows,
|
| 312 |
-
figure=fig)
|
| 313 |
-
|
| 314 |
-
data_values = data.values.tolist()
|
| 315 |
-
while len(data_values) % NUM_COLS != 0:
|
| 316 |
-
data_values.append(['', ''])
|
| 317 |
-
|
| 318 |
-
rows_per_col_layout = math.ceil(len(data_values) / NUM_COLS)
|
| 319 |
-
sorted_data = [['', '']] * len(data_values)
|
| 320 |
-
for i, item in enumerate(data_values):
|
| 321 |
-
if item[0] and item[1]:
|
| 322 |
-
row_in_col = i % rows_per_col_layout
|
| 323 |
-
col_idx = i // rows_per_col_layout
|
| 324 |
-
new_index = row_in_col * NUM_COLS + col_idx
|
| 325 |
-
if new_index < len(sorted_data):
|
| 326 |
-
sorted_data[new_index] = item
|
| 327 |
-
|
| 328 |
-
for idx, (hall, end_time) in enumerate(sorted_data):
|
| 329 |
-
if hall and end_time:
|
| 330 |
-
row_grid = idx // NUM_COLS + 1
|
| 331 |
-
col_grid = idx % NUM_COLS
|
| 332 |
-
ax = fig.add_subplot(gs[row_grid, col_grid])
|
| 333 |
-
for spine in ax.spines.values():
|
| 334 |
-
spine.set_visible(True)
|
| 335 |
-
spine.set_linestyle((0, (1, 2)))
|
| 336 |
-
spine.set_color(BORDER_COLOR)
|
| 337 |
-
spine.set_linewidth(0.75)
|
| 338 |
-
|
| 339 |
-
display_text = f"{hall}{end_time}"
|
| 340 |
-
ax.text(0.5, 0.5, display_text,
|
| 341 |
-
fontproperties=get_font_bold(base_fontsize), # 使用 Bold 字体
|
| 342 |
-
ha='center', va='center',
|
| 343 |
-
transform=ax.transAxes)
|
| 344 |
-
ax.set_xticks([])
|
| 345 |
-
ax.set_yticks([])
|
| 346 |
-
ax.set_facecolor('none')
|
| 347 |
-
|
| 348 |
-
ax_date = fig.add_subplot(gs[0, :])
|
| 349 |
-
ax_date.text(0.01, 0.5, f"{date_str} {title}",
|
| 350 |
-
fontproperties=get_font_bold(base_fontsize * 0.5), # 使用 Bold 字体
|
| 351 |
-
color=DATE_COLOR,
|
| 352 |
-
ha='left', va='center',
|
| 353 |
-
transform=ax_date.transAxes)
|
| 354 |
-
ax_date.set_axis_off()
|
| 355 |
-
ax_date.set_facecolor('none')
|
| 356 |
-
|
| 357 |
-
return fig
|
| 358 |
-
|
| 359 |
-
fig_for_output = generate_figure()
|
| 360 |
-
png_buffer = io.BytesIO()
|
| 361 |
-
fig_for_output.savefig(png_buffer, format='png')
|
| 362 |
-
png_buffer.seek(0)
|
| 363 |
-
png_base64 = base64.b64encode(png_buffer.getvalue()).decode()
|
| 364 |
-
|
| 365 |
-
pdf_buffer = io.BytesIO()
|
| 366 |
-
with PdfPages(pdf_buffer) as pdf:
|
| 367 |
-
pdf.savefig(fig_for_output)
|
| 368 |
-
pdf_buffer.seek(0)
|
| 369 |
-
pdf_base64 = base64.b64encode(pdf_buffer.getvalue()).decode()
|
| 370 |
-
|
| 371 |
-
plt.close(fig_for_output)
|
| 372 |
-
return {'png': f'data:image/png;base64,{png_base64}', 'pdf': f'data:application/pdf;base64,{pdf_base64}'}
|
| 373 |
-
|
| 374 |
-
def display_pdf(base64_pdf):
|
| 375 |
-
"""在Streamlit中嵌入显示PDF"""
|
| 376 |
-
return f'<iframe src="{base64_pdf}" width="100%" height="800" type="application/pdf"></iframe>'
|
| 377 |
-
|
| 378 |
-
# --- Streamlit 主程序 ---
|
| 379 |
-
st.set_page_config(page_title="影院排期打印工具", layout="wide")
|
| 380 |
-
st.title("影院排期打印工具")
|
| 381 |
-
|
| 382 |
-
uploaded_file = st.file_uploader("请上传 '放映时间核对表.xls' 或 '放映场次核对表.xls'",
|
| 383 |
-
type=["xls", "xlsx"])
|
| 384 |
-
|
| 385 |
-
if uploaded_file:
|
| 386 |
-
# 根据文件名中的关键字判断使用哪个处理流程
|
| 387 |
-
if "时间" in uploaded_file.name:
|
| 388 |
-
st.header("LED屏排片表")
|
| 389 |
-
with st.spinner("正在处理文件,请稍候..."):
|
| 390 |
-
schedule, date_str = process_schedule_led(uploaded_file)
|
| 391 |
-
if schedule is not None and not schedule.empty:
|
| 392 |
-
output = create_print_layout_led(schedule, date_str)
|
| 393 |
-
tab1, tab2 = st.tabs(["PDF 预览", "图片预览 (PNG)"])
|
| 394 |
-
with tab1:
|
| 395 |
-
st.markdown(display_pdf(output['pdf']), unsafe_allow_html=True)
|
| 396 |
-
with tab2:
|
| 397 |
-
st.image(output['png'], use_container_width=True)
|
| 398 |
-
else:
|
| 399 |
-
st.error("无法处理文件。请检查文件内容和格式是否正确。")
|
| 400 |
-
|
| 401 |
-
elif "场次" in uploaded_file.name:
|
| 402 |
-
st.header("散场时间快捷打印")
|
| 403 |
-
part1, part2, date_str = process_schedule_times(uploaded_file)
|
| 404 |
-
if part1 is not None and part2 is not None:
|
| 405 |
-
part1_output = create_print_layout_times(part1, "A", date_str)
|
| 406 |
-
part2_output = create_print_layout_times(part2, "C", date_str)
|
| 407 |
-
|
| 408 |
-
col1, col2 = st.columns(2)
|
| 409 |
-
with col1:
|
| 410 |
-
st.subheader("白班 (散场时间 ≤ 17:00)")
|
| 411 |
-
if part1_output:
|
| 412 |
-
tab1_1, tab1_2 = st.tabs(["PDF 预览 ", "图片预览 (PNG) "])
|
| 413 |
-
with tab1_1:
|
| 414 |
-
st.markdown(display_pdf(part1_output['pdf']), unsafe_allow_html=True)
|
| 415 |
-
with tab1_2:
|
| 416 |
-
st.image(part1_output['png'])
|
| 417 |
-
else:
|
| 418 |
-
st.info("白班没有排期数据。")
|
| 419 |
-
|
| 420 |
-
with col2:
|
| 421 |
-
st.subheader("晚班 (散场时间 > 17:00)")
|
| 422 |
-
if part2_output:
|
| 423 |
-
tab2_1, tab2_2 = st.tabs(["PDF 预览 ", "图片预览 (PNG) "])
|
| 424 |
-
with tab2_1:
|
| 425 |
-
st.markdown(display_pdf(part2_output['pdf']), unsafe_allow_html=True)
|
| 426 |
-
with tab2_2:
|
| 427 |
-
st.image(part2_output['png'])
|
| 428 |
-
else:
|
| 429 |
-
st.info("晚班没有排期数据。")
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
# 设置页面布局为宽屏模式,并设置页面标题
|
| 6 |
+
st.set_page_config(layout="wide", page_title="影城效率分析 - 最终版")
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def clean_movie_title(title):
|
| 10 |
+
"""
|
| 11 |
+
清理并规范化电影标题,移除版本、语言等标识以便合并统计。
|
| 12 |
+
"""
|
| 13 |
+
if not isinstance(title, str):
|
| 14 |
+
return title
|
| 15 |
+
suffixes_to_remove = [
|
| 16 |
+
'2D', '3D', '4D', '4K', 'IMAX', 'CINITY', '杜比', '巨幕',
|
| 17 |
+
'国语', '英语', '粤语', '日语', '原版', '修复版',
|
| 18 |
+
'(国)', '(英)', '(粤)'
|
| 19 |
+
]
|
| 20 |
+
parts = title.split()
|
| 21 |
+
cleaned_parts = [p for p in parts if p.upper() not in [s.upper() for s in suffixes_to_remove]]
|
| 22 |
+
if not cleaned_parts:
|
| 23 |
+
return title
|
| 24 |
+
return ' '.join(cleaned_parts).strip()
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def style_efficiency(row):
|
| 28 |
+
"""
|
| 29 |
+
根据效率值高亮特定行。
|
| 30 |
+
如果座次效率或场次效率 < 0.5 或 > 1.5,则高亮为淡黄色。
|
| 31 |
+
"""
|
| 32 |
+
highlight = 'background-color: #FFFFE0;'
|
| 33 |
+
default = ''
|
| 34 |
+
seat_efficiency = row.get('座次效率', 0)
|
| 35 |
+
session_efficiency = row.get('场次效率', 0)
|
| 36 |
+
if (seat_efficiency < 0.5 or seat_efficiency > 1.5 or
|
| 37 |
+
session_efficiency < 0.5 or session_efficiency > 1.5):
|
| 38 |
+
return [highlight] * len(row)
|
| 39 |
+
return [default] * len(row)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def process_and_analyze_data(df):
|
| 43 |
+
"""
|
| 44 |
+
核心数据处理与分析函数。
|
| 45 |
+
"""
|
| 46 |
+
if df.empty:
|
| 47 |
+
return pd.DataFrame()
|
| 48 |
+
|
| 49 |
+
analysis_df = df.groupby('影片名称_清理后').agg(
|
| 50 |
+
座位数=('座位数', 'sum'),
|
| 51 |
+
场次=('影片名称_清理后', 'size'),
|
| 52 |
+
票房=('总收入', 'sum'),
|
| 53 |
+
人次=('总人次', 'sum')
|
| 54 |
+
).reset_index()
|
| 55 |
+
analysis_df.rename(columns={'影片名称_清理后': '影片'}, inplace=True)
|
| 56 |
+
|
| 57 |
+
analysis_df = analysis_df.sort_values(by='票房', ascending=False).reset_index(drop=True)
|
| 58 |
+
|
| 59 |
+
total_seats = analysis_df['座位数'].sum()
|
| 60 |
+
total_sessions = analysis_df['场次'].sum()
|
| 61 |
+
total_revenue = analysis_df['票房'].sum()
|
| 62 |
+
|
| 63 |
+
analysis_df['均价'] = np.divide(analysis_df['票房'], analysis_df['人次']).fillna(0)
|
| 64 |
+
analysis_df['座次比'] = np.divide(analysis_df['座位数'], total_seats).fillna(0)
|
| 65 |
+
analysis_df['场次比'] = np.divide(analysis_df['场次'], total_sessions).fillna(0)
|
| 66 |
+
analysis_df['票房比'] = np.divide(analysis_df['票房'], total_revenue).fillna(0)
|
| 67 |
+
analysis_df['座次效率'] = np.divide(analysis_df['票房比'], analysis_df['座次比']).fillna(0)
|
| 68 |
+
analysis_df['场次效率'] = np.divide(analysis_df['票房比'], analysis_df['场次比']).fillna(0)
|
| 69 |
+
|
| 70 |
+
# **优化1:移除“序号”列的定义**
|
| 71 |
+
final_columns = [
|
| 72 |
+
'影片', '座位数', '场次', '票房', '人次', '均价',
|
| 73 |
+
'座次比', '场次比', '票房比', '座次效率', '场次效率'
|
| 74 |
+
]
|
| 75 |
+
analysis_df = analysis_df[final_columns]
|
| 76 |
+
|
| 77 |
+
return analysis_df
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
# --- Streamlit 用户界面 ---
|
| 81 |
+
|
| 82 |
+
st.title('排片效率分析')
|
| 83 |
+
st.write("上传 `影片映出日累计报表.xlsx` 文件。")
|
| 84 |
+
|
| 85 |
+
uploaded_file = st.file_uploader("请在此处上传 Excel 文件", type=['xlsx', 'xls', 'csv'])
|
| 86 |
+
|
| 87 |
+
if uploaded_file is not None:
|
| 88 |
try:
|
| 89 |
+
df = pd.read_excel(uploaded_file, skiprows=3, header=None)
|
| 90 |
+
|
| 91 |
+
df.rename(columns={
|
| 92 |
+
0: '影片名称', 2: '放映时间', 5: '总人次', 6: '总收入', 7: '座位数'
|
| 93 |
+
}, inplace=True)
|
| 94 |
+
|
| 95 |
+
required_cols = ['影片名称', '放映时间', '座位数', '总收入', '总人次']
|
| 96 |
+
df = df[required_cols]
|
| 97 |
+
df.dropna(subset=['影片名称', '放映时间'], inplace=True)
|
| 98 |
+
|
| 99 |
+
for col in ['座位数', '总收入', '总人次']:
|
| 100 |
+
df[col] = pd.to_numeric(df[col], errors='coerce').fillna(0)
|
| 101 |
+
|
| 102 |
+
df['放映时间'] = pd.to_datetime(df['放映时间'], format='%H:%M:%S', errors='coerce').dt.time
|
| 103 |
+
df.dropna(subset=['放映时间'], inplace=True)
|
| 104 |
+
|
| 105 |
+
df['影片名称_清理后'] = df['影片名称'].apply(clean_movie_title)
|
| 106 |
+
|
| 107 |
+
st.toast("文件上传成功,数据已按规则处理!", icon="🎉")
|
| 108 |
+
|
| 109 |
+
format_config = {
|
| 110 |
+
'座位数': '{:,.0f}', '场次': '{:,.0f}', '人次': '{:,.0f}',
|
| 111 |
+
'票房': '{:,.2f}', '均价': '{:.2f}', '座次比': '{:.2%}', '场次比': '{:.2%}',
|
| 112 |
+
'票房比': '{:.2%}', '座次效率': '{:.2f}', '场次效率': '{:.2f}',
|
| 113 |
+
}
|
| 114 |
+
|
| 115 |
+
# --- 1. 全天数据分析 ---
|
| 116 |
+
st.header("全天排片效率分析")
|
| 117 |
+
|
| 118 |
+
full_day_analysis = process_and_analyze_data(df.copy())
|
| 119 |
+
|
| 120 |
+
if not full_day_analysis.empty:
|
| 121 |
+
table_height = (len(full_day_analysis) + 1) * 35 + 3
|
| 122 |
+
# **优化2:使用 .hide(axis="index") 隐藏默认序号列**
|
| 123 |
+
st.dataframe(
|
| 124 |
+
full_day_analysis.style.format(format_config).apply(style_efficiency, axis=1).hide(axis="index"),
|
| 125 |
+
height=table_height,
|
| 126 |
+
use_container_width=True
|
| 127 |
+
)
|
| 128 |
+
else:
|
| 129 |
+
st.warning("全天数据不足,无法生成分析报告。")
|
| 130 |
+
|
| 131 |
+
# --- 2. 黄金时段数据分析 ---
|
| 132 |
+
st.header("黄金时段 (14:00 - 21:00) 排片效率分析")
|
| 133 |
+
|
| 134 |
+
start_time = pd.to_datetime('14:00:00').time()
|
| 135 |
+
end_time = pd.to_datetime('21:00:00').time()
|
| 136 |
+
prime_time_df = df[df['放映时间'].between(start_time, end_time)]
|
| 137 |
+
|
| 138 |
+
prime_time_analysis = process_and_analyze_data(prime_time_df.copy())
|
| 139 |
+
|
| 140 |
+
if not prime_time_analysis.empty:
|
| 141 |
+
table_height_prime = (len(prime_time_analysis) + 1) * 35 + 3
|
| 142 |
+
# **优化2:同样隐藏黄金时段表格的默认序号**
|
| 143 |
+
st.dataframe(
|
| 144 |
+
prime_time_analysis.style.format(format_config).apply(style_efficiency, axis=1).hide(axis="index"),
|
| 145 |
+
height=table_height_prime,
|
| 146 |
+
use_container_width=True
|
| 147 |
+
)
|
| 148 |
+
else:
|
| 149 |
+
st.warning("黄金时段内没有有效场次数据,无法生成分析报告。")
|
| 150 |
+
|
| 151 |
+
# --- 3. 一键复制影片列表 ---
|
| 152 |
+
if not full_day_analysis.empty:
|
| 153 |
+
st.header("复制当日影片列表")
|
| 154 |
+
|
| 155 |
+
movie_titles = full_day_analysis['影片'].tolist()
|
| 156 |
+
formatted_titles = ''.join([f'《{title}》' for title in movie_titles])
|
| 157 |
+
|
| 158 |
+
st.code(formatted_titles, language='text')
|
| 159 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
except Exception as e:
|
| 161 |
+
st.error(f"处理文件时出错: {e}")
|
| 162 |
+
st.warning("请确保上传的文件是'影片映出日累计报表.xlsx',并且格式正确。")
|
| 163 |
+
|
| 164 |
+
else:
|
| 165 |
+
st.info("请上传文件以开始分析。")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|