Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,55 +1,38 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
|
|
|
|
|
|
4 |
|
5 |
-
#
|
6 |
-
st.set_page_config(layout="wide", page_title="
|
7 |
|
8 |
|
|
|
9 |
def clean_movie_title(title):
|
10 |
-
"""
|
11 |
-
清理并规范化电影标题。
|
12 |
-
根据用户最新指示:只保留字符串中第一个空格之前的部分。
|
13 |
-
"""
|
14 |
if not isinstance(title, str):
|
15 |
return title
|
16 |
-
# 将标题按第一个空格分割,并只取第一部分
|
17 |
return title.split(' ', 1)[0]
|
18 |
|
19 |
|
20 |
def style_efficiency(row):
|
21 |
-
|
22 |
-
|
23 |
-
高于 1.5 的淡绿色,低于 0.5 的淡红色。
|
24 |
-
"""
|
25 |
-
# 定义颜色
|
26 |
-
green = 'background-color: #E6F5E6;' # 淡绿色
|
27 |
-
red = 'background-color: #FFE5E5;' # 淡红色
|
28 |
default = ''
|
29 |
-
|
30 |
-
# 初始化样式列表,长度与行内元素数量一致
|
31 |
styles = [default] * len(row)
|
32 |
-
|
33 |
-
# 获取效率值
|
34 |
seat_efficiency = row.get('座次效率', 0)
|
35 |
session_efficiency = row.get('场次效率', 0)
|
36 |
-
|
37 |
-
# 判断并应用样式
|
38 |
if seat_efficiency > 1.5 or session_efficiency > 1.5:
|
39 |
styles = [green] * len(row)
|
40 |
elif seat_efficiency < 0.5 or session_efficiency < 0.5:
|
41 |
styles = [red] * len(row)
|
42 |
-
|
43 |
return styles
|
44 |
|
45 |
|
46 |
def process_and_analyze_data(df):
|
47 |
-
"""
|
48 |
-
核心数据处理与分析函数。
|
49 |
-
"""
|
50 |
if df.empty:
|
51 |
return pd.DataFrame()
|
52 |
-
|
53 |
analysis_df = df.groupby('影片名称_清理后').agg(
|
54 |
座位数=('座位数', 'sum'),
|
55 |
场次=('影片名称_清理后', 'size'),
|
@@ -57,112 +40,207 @@ def process_and_analyze_data(df):
|
|
57 |
人次=('总人次', 'sum')
|
58 |
).reset_index()
|
59 |
analysis_df.rename(columns={'影片名称_清理后': '影片'}, inplace=True)
|
60 |
-
|
61 |
analysis_df = analysis_df.sort_values(by='票房', ascending=False).reset_index(drop=True)
|
62 |
-
|
63 |
total_seats = analysis_df['座位数'].sum()
|
64 |
total_sessions = analysis_df['场次'].sum()
|
65 |
total_revenue = analysis_df['票房'].sum()
|
66 |
-
|
67 |
analysis_df['均价'] = np.divide(analysis_df['票房'], analysis_df['人次']).fillna(0)
|
68 |
analysis_df['座次比'] = np.divide(analysis_df['座位数'], total_seats).fillna(0)
|
69 |
analysis_df['场次比'] = np.divide(analysis_df['场次'], total_sessions).fillna(0)
|
70 |
analysis_df['票房比'] = np.divide(analysis_df['票房'], total_revenue).fillna(0)
|
71 |
analysis_df['座次效率'] = np.divide(analysis_df['票房比'], analysis_df['座次比']).fillna(0)
|
72 |
analysis_df['场次效率'] = np.divide(analysis_df['票房比'], analysis_df['场次比']).fillna(0)
|
73 |
-
|
74 |
-
|
75 |
-
'影片', '座位数', '场次', '票房', '人次', '均价',
|
76 |
-
'座次比', '场次比', '票房比', '座次效率', '场次效率'
|
77 |
-
]
|
78 |
analysis_df = analysis_df[final_columns]
|
79 |
-
|
80 |
return analysis_df
|
81 |
|
82 |
|
83 |
-
# ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
uploaded_file = st.file_uploader("请在此处上传 Excel 文件", type=['xlsx', 'xls', 'csv'])
|
|
|
89 |
|
90 |
if uploaded_file is not None:
|
91 |
try:
|
|
|
92 |
df = pd.read_excel(uploaded_file, skiprows=3, header=None)
|
93 |
-
|
94 |
-
df.rename(columns={
|
95 |
-
0: '影片名称', 2: '放映时间', 5: '总人次', 6: '总收入', 7: '座位数'
|
96 |
-
}, inplace=True)
|
97 |
-
|
98 |
required_cols = ['影片名称', '放映时间', '座位数', '总收入', '总人次']
|
99 |
df = df[required_cols]
|
100 |
df.dropna(subset=['影片名称', '放映时间'], inplace=True)
|
101 |
-
|
102 |
for col in ['座位数', '总收入', '总人次']:
|
103 |
df[col] = pd.to_numeric(df[col], errors='coerce').fillna(0)
|
104 |
-
|
105 |
df['放映时间'] = pd.to_datetime(df['放映时间'], format='%H:%M:%S', errors='coerce').dt.time
|
106 |
df.dropna(subset=['放映时间'], inplace=True)
|
107 |
-
|
108 |
df['影片名称_清理后'] = df['影片名称'].apply(clean_movie_title)
|
|
|
|
|
|
|
|
|
109 |
|
110 |
-
st.
|
111 |
-
|
112 |
-
format_config = {
|
113 |
-
'座位数': '{:,.0f}', '场次': '{:,.0f}', '人次': '{:,.0f}',
|
114 |
-
'票房': '{:,.2f}', '均价': '{:.2f}', '座次比': '{:.2%}', '场次比': '{:.2%}',
|
115 |
-
'票房比': '{:.2%}', '座次效率': '{:.2f}', '场次效率': '{:.2f}',
|
116 |
-
}
|
117 |
-
|
118 |
-
# --- 1. 全天数据分析 ---
|
119 |
-
st.header("全天排片效率分析")
|
120 |
-
|
121 |
full_day_analysis = process_and_analyze_data(df.copy())
|
122 |
-
|
123 |
if not full_day_analysis.empty:
|
124 |
table_height = (len(full_day_analysis) + 1) * 35 + 3
|
125 |
st.dataframe(
|
126 |
full_day_analysis.style.format(format_config).apply(style_efficiency, axis=1).hide(axis="index"),
|
127 |
-
height=table_height,
|
128 |
-
use_container_width=True,
|
129 |
-
hide_index=True
|
130 |
-
)
|
131 |
-
else:
|
132 |
-
st.warning("全天数据不足,无法生成分析报告。")
|
133 |
-
|
134 |
-
# --- 2. 黄金时段数据分析 ---
|
135 |
-
st.header("黄金时段排片效率分析 (14:00-21:00)")
|
136 |
-
|
137 |
-
start_time = pd.to_datetime('14:00:00').time()
|
138 |
-
end_time = pd.to_datetime('21:00:00').time()
|
139 |
-
prime_time_df = df[df['放映时间'].between(start_time, end_time)]
|
140 |
|
|
|
|
|
|
|
141 |
prime_time_analysis = process_and_analyze_data(prime_time_df.copy())
|
142 |
-
|
143 |
if not prime_time_analysis.empty:
|
144 |
table_height_prime = (len(prime_time_analysis) + 1) * 35 + 3
|
145 |
st.dataframe(
|
146 |
prime_time_analysis.style.format(format_config).apply(style_efficiency, axis=1).hide(axis="index"),
|
147 |
-
height=table_height_prime,
|
148 |
-
use_container_width=True,
|
149 |
-
hide_index = True
|
150 |
-
)
|
151 |
-
else:
|
152 |
-
st.warning("黄金时段内没有有效场次数据,无法生成分析报告。")
|
153 |
-
|
154 |
-
# --- 3. 一键复制影片列表 ---
|
155 |
-
if not full_day_analysis.empty:
|
156 |
-
st.header("复制当日影片列表")
|
157 |
|
|
|
|
|
158 |
movie_titles = full_day_analysis['影片'].tolist()
|
159 |
formatted_titles = ''.join([f'《{title}》' for title in movie_titles])
|
160 |
-
|
161 |
st.code(formatted_titles, language='text')
|
162 |
|
163 |
except Exception as e:
|
164 |
st.error(f"处理文件时出错: {e}")
|
165 |
-
st.warning("请确保上传的文件是'影片映出日累计报表.xlsx',并且格式正确。")
|
166 |
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
+
import requests
|
5 |
+
import time
|
6 |
+
from collections import defaultdict
|
7 |
|
8 |
+
# Set page layout to wide mode and set page title
|
9 |
+
st.set_page_config(layout="wide", page_title="影城效率与内容分析工具")
|
10 |
|
11 |
|
12 |
+
# --- Efficiency Analysis Functions ---
|
13 |
def clean_movie_title(title):
|
|
|
|
|
|
|
|
|
14 |
if not isinstance(title, str):
|
15 |
return title
|
|
|
16 |
return title.split(' ', 1)[0]
|
17 |
|
18 |
|
19 |
def style_efficiency(row):
|
20 |
+
green = 'background-color: #E6F5E6;' # Light Green
|
21 |
+
red = 'background-color: #FFE5E5;' # Light Red
|
|
|
|
|
|
|
|
|
|
|
22 |
default = ''
|
|
|
|
|
23 |
styles = [default] * len(row)
|
|
|
|
|
24 |
seat_efficiency = row.get('座次效率', 0)
|
25 |
session_efficiency = row.get('场次效率', 0)
|
|
|
|
|
26 |
if seat_efficiency > 1.5 or session_efficiency > 1.5:
|
27 |
styles = [green] * len(row)
|
28 |
elif seat_efficiency < 0.5 or session_efficiency < 0.5:
|
29 |
styles = [red] * len(row)
|
|
|
30 |
return styles
|
31 |
|
32 |
|
33 |
def process_and_analyze_data(df):
|
|
|
|
|
|
|
34 |
if df.empty:
|
35 |
return pd.DataFrame()
|
|
|
36 |
analysis_df = df.groupby('影片名称_清理后').agg(
|
37 |
座位数=('座位数', 'sum'),
|
38 |
场次=('影片名称_清理后', 'size'),
|
|
|
40 |
人次=('总人次', 'sum')
|
41 |
).reset_index()
|
42 |
analysis_df.rename(columns={'影片名称_清理后': '影片'}, inplace=True)
|
|
|
43 |
analysis_df = analysis_df.sort_values(by='票房', ascending=False).reset_index(drop=True)
|
|
|
44 |
total_seats = analysis_df['座位数'].sum()
|
45 |
total_sessions = analysis_df['场次'].sum()
|
46 |
total_revenue = analysis_df['票房'].sum()
|
|
|
47 |
analysis_df['均价'] = np.divide(analysis_df['票房'], analysis_df['人次']).fillna(0)
|
48 |
analysis_df['座次比'] = np.divide(analysis_df['座位数'], total_seats).fillna(0)
|
49 |
analysis_df['场次比'] = np.divide(analysis_df['场次'], total_sessions).fillna(0)
|
50 |
analysis_df['票房比'] = np.divide(analysis_df['票房'], total_revenue).fillna(0)
|
51 |
analysis_df['座次效率'] = np.divide(analysis_df['票房比'], analysis_df['座次比']).fillna(0)
|
52 |
analysis_df['场次效率'] = np.divide(analysis_df['票房比'], analysis_df['场次比']).fillna(0)
|
53 |
+
final_columns = ['影片', '座位数', '场次', '票房', '人次', '均价', '座次比', '场次比', '票房比', '座次效率',
|
54 |
+
'场次效率']
|
|
|
|
|
|
|
55 |
analysis_df = analysis_df[final_columns]
|
|
|
56 |
return analysis_df
|
57 |
|
58 |
|
59 |
+
# --- New Feature: Server Movie Content Inquiry ---
|
60 |
+
@st.cache_data(show_spinner=False)
|
61 |
+
def fetch_and_process_server_movies(priority_movie_titles=None):
|
62 |
+
if priority_movie_titles is None:
|
63 |
+
priority_movie_titles = []
|
64 |
+
|
65 |
+
# 1. Get Token
|
66 |
+
token_headers = {
|
67 |
+
'Host': 'oa.hengdianfilm.com:7080', 'Content-Type': 'application/json',
|
68 |
+
'Origin': 'http://115.239.253.233:7080', 'Connection': 'keep-alive',
|
69 |
+
'Accept': 'application/json, text/javascript, */*; q=0.01',
|
70 |
+
'User-Agent': 'Mozilla/5.0 (iPhone; CPU iPhone OS 18_5_0 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) CriOS/138.0.7204.156 Mobile/15E148 Safari/604.1',
|
71 |
+
'Accept-Language': 'zh-CN,zh-Hans;q=0.9',
|
72 |
+
}
|
73 |
+
token_json_data = {'appId': 'hd', 'appSecret': 'ad761f8578cc6170', 'timeStamp': int(time.time() * 1000)}
|
74 |
+
token_url = 'http://oa.hengdianfilm.com:7080/cinema-api/admin/generateToken?token=hd&murl=?token=hd&murl=ticket=-1495916529737643774'
|
75 |
+
response = requests.post(token_url, headers=token_headers, json=token_json_data, timeout=10)
|
76 |
+
response.raise_for_status()
|
77 |
+
token_data = response.json()
|
78 |
+
if token_data.get('error_code') != '0000':
|
79 |
+
raise Exception(f"获取Token失败: {token_data.get('error_desc')}")
|
80 |
+
auth_token = token_data['param']
|
81 |
+
|
82 |
+
# 2. Fetch movie list (with pagination and delay)
|
83 |
+
all_movies = []
|
84 |
+
page_index = 1
|
85 |
+
while True:
|
86 |
+
list_headers = {
|
87 |
+
'Accept': 'application/json, text/javascript, */*; q=0.01',
|
88 |
+
'Content-Type': 'application/json; charset=UTF-8',
|
89 |
+
'Origin': 'http://115.239.253.233:7080', 'Proxy-Connection': 'keep-alive', 'Token': auth_token,
|
90 |
+
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/138.0.0.0 Safari/537.36',
|
91 |
+
'X-SESSIONID': 'PQ0J3K85GJEDVYIGZE1KEG1K80USDAP4',
|
92 |
+
}
|
93 |
+
list_params = {'token': 'hd', 'murl': 'ContentMovie'}
|
94 |
+
list_json_data = {'THEATER_ID': 38205954, 'SOURCE': 'SERVER', 'ASSERT_TYPE': 2, 'PAGE_CAPACITY': 20,
|
95 |
+
'PAGE_INDEX': page_index}
|
96 |
+
list_url = 'http://oa.hengdianfilm.com:7080/cinema-api/cinema/server/dcp/list'
|
97 |
+
response = requests.post(list_url, params=list_params, headers=list_headers, json=list_json_data, verify=False)
|
98 |
+
response.raise_for_status()
|
99 |
+
movie_data = response.json()
|
100 |
+
if movie_data.get("RSPCD") != "000000":
|
101 |
+
raise Exception(f"获取影片列表失败: {movie_data.get('RSPMSG')}")
|
102 |
+
body = movie_data.get("BODY", {})
|
103 |
+
movies_on_page = body.get("LIST", [])
|
104 |
+
if not movies_on_page: break
|
105 |
+
all_movies.extend(movies_on_page)
|
106 |
+
if len(all_movies) >= body.get("COUNT", 0): break
|
107 |
+
page_index += 1
|
108 |
+
time.sleep(1) # Add 1-second delay between requests
|
109 |
+
|
110 |
+
# 3. Process data into a central, detailed structure
|
111 |
+
movie_details = {}
|
112 |
+
for movie in all_movies:
|
113 |
+
content_name = movie.get('CONTENT_NAME')
|
114 |
+
if not content_name: continue
|
115 |
+
movie_details[content_name] = {
|
116 |
+
'assert_name': movie.get('ASSERT_NAME'),
|
117 |
+
'halls': sorted([h.get('HALL_NAME') for h in movie.get('HALL_INFO', [])])
|
118 |
+
}
|
119 |
+
|
120 |
+
# 4. Prepare data for the two display views
|
121 |
+
# For View by Hall
|
122 |
+
by_hall = defaultdict(list)
|
123 |
+
for content_name, details in movie_details.items():
|
124 |
+
for hall_name in details['halls']:
|
125 |
+
by_hall[hall_name].append({'content_name': content_name, 'details': details})
|
126 |
+
|
127 |
+
for hall_name in by_hall:
|
128 |
+
by_hall[hall_name].sort(key=lambda item: (
|
129 |
+
item['details']['assert_name'] is None or item['details']['assert_name'] == '',
|
130 |
+
item['details']['assert_name'] or item['content_name']
|
131 |
+
))
|
132 |
+
|
133 |
+
# For View by Movie
|
134 |
+
view2_list = []
|
135 |
+
for content_name, details in movie_details.items():
|
136 |
+
if details.get('assert_name'):
|
137 |
+
view2_list.append({
|
138 |
+
'assert_name': details['assert_name'],
|
139 |
+
'content_name': content_name,
|
140 |
+
'halls': details['halls']
|
141 |
+
})
|
142 |
+
|
143 |
+
priority_list = [item for item in view2_list if
|
144 |
+
any(p_title in item['assert_name'] for p_title in priority_movie_titles)]
|
145 |
+
other_list_items = [item for item in view2_list if item not in priority_list]
|
146 |
+
|
147 |
+
priority_list.sort(key=lambda x: x['assert_name'])
|
148 |
+
other_list_items.sort(key=lambda x: x['assert_name'])
|
149 |
+
|
150 |
+
final_sorted_list = priority_list + other_list_items
|
151 |
+
|
152 |
+
return dict(sorted(by_hall.items())), final_sorted_list
|
153 |
+
|
154 |
|
155 |
+
def get_circled_number(hall_name):
|
156 |
+
mapping = {'1': '①', '2': '②', '3': '③', '4': '④', '5': '⑤', '6': '⑥', '7': '⑦', '8': '⑧', '9': '⑨'}
|
157 |
+
num_str = ''.join(filter(str.isdigit, hall_name))
|
158 |
+
return mapping.get(num_str, '')
|
159 |
+
|
160 |
+
|
161 |
+
# --- Streamlit Main UI ---
|
162 |
+
st.title('影城排片效率与内容分析工具')
|
163 |
+
st.write("上传 `影片映出日累计报表.xlsx` 进行效率分析,或点击下方按钮查询 TMS 服务器影片内容。")
|
164 |
|
165 |
uploaded_file = st.file_uploader("请在此处上传 Excel 文件", type=['xlsx', 'xls', 'csv'])
|
166 |
+
full_day_analysis = pd.DataFrame()
|
167 |
|
168 |
if uploaded_file is not None:
|
169 |
try:
|
170 |
+
# Efficiency analysis part
|
171 |
df = pd.read_excel(uploaded_file, skiprows=3, header=None)
|
172 |
+
df.rename(columns={0: '影片名称', 2: '放映时间', 5: '总人次', 6: '总收入', 7: '座位数'}, inplace=True)
|
|
|
|
|
|
|
|
|
173 |
required_cols = ['影片名称', '放映时间', '座位数', '总收入', '总人次']
|
174 |
df = df[required_cols]
|
175 |
df.dropna(subset=['影片名称', '放映时间'], inplace=True)
|
|
|
176 |
for col in ['座位数', '总收入', '总人次']:
|
177 |
df[col] = pd.to_numeric(df[col], errors='coerce').fillna(0)
|
|
|
178 |
df['放映时间'] = pd.to_datetime(df['放映时间'], format='%H:%M:%S', errors='coerce').dt.time
|
179 |
df.dropna(subset=['放映时间'], inplace=True)
|
|
|
180 |
df['影片名称_清理后'] = df['影片名称'].apply(clean_movie_title)
|
181 |
+
st.toast("文件上传成功,效率分析已生成!", icon="🎉")
|
182 |
+
format_config = {'座位数': '{:,.0f}', '场次': '{:,.0f}', '人次': '{:,.0f}', '票房': '{:,.2f}', '均价': '{:.2f}',
|
183 |
+
'座次比': '{:.2%}', '场次比': '{:.2%}', '票房比': '{:.2%}', '座次效率': '{:.2f}',
|
184 |
+
'场次效率': '{:.2f}'}
|
185 |
|
186 |
+
st.markdown("### 全天排片效率分析")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
full_day_analysis = process_and_analyze_data(df.copy())
|
|
|
188 |
if not full_day_analysis.empty:
|
189 |
table_height = (len(full_day_analysis) + 1) * 35 + 3
|
190 |
st.dataframe(
|
191 |
full_day_analysis.style.format(format_config).apply(style_efficiency, axis=1).hide(axis="index"),
|
192 |
+
height=table_height, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
+
st.markdown("#### 黄金时段排片效率分析 (14:00-21:00)")
|
195 |
+
start_time, end_time = pd.to_datetime('14:00:00').time(), pd.to_datetime('21:00:00').time()
|
196 |
+
prime_time_df = df[df['放映时间'].between(start_time, end_time)]
|
197 |
prime_time_analysis = process_and_analyze_data(prime_time_df.copy())
|
|
|
198 |
if not prime_time_analysis.empty:
|
199 |
table_height_prime = (len(prime_time_analysis) + 1) * 35 + 3
|
200 |
st.dataframe(
|
201 |
prime_time_analysis.style.format(format_config).apply(style_efficiency, axis=1).hide(axis="index"),
|
202 |
+
height=table_height_prime, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
+
if not full_day_analysis.empty:
|
205 |
+
st.markdown("##### 复制当日排片列表")
|
206 |
movie_titles = full_day_analysis['影片'].tolist()
|
207 |
formatted_titles = ''.join([f'《{title}》' for title in movie_titles])
|
|
|
208 |
st.code(formatted_titles, language='text')
|
209 |
|
210 |
except Exception as e:
|
211 |
st.error(f"处理文件时出错: {e}")
|
|
|
212 |
|
213 |
+
|
214 |
+
# --- New Feature Module ---
|
215 |
+
st.markdown("### TMS 服务器影片内容查询")
|
216 |
+
if st.button('点击查询 TMS 服务器'):
|
217 |
+
with st.spinner("正在从 TMS 服务器获取数据中,请稍候..."):
|
218 |
+
try:
|
219 |
+
priority_titles = full_day_analysis['影片'].tolist() if not full_day_analysis.empty else []
|
220 |
+
halls_data, movie_list_sorted = fetch_and_process_server_movies(priority_titles)
|
221 |
+
st.toast("TMS 服务器数据获取成功!", icon="🎉")
|
222 |
+
|
223 |
+
# --- View by Movie (in a single expander) ---
|
224 |
+
st.markdown("#### 按影片查看所在影厅")
|
225 |
+
with st.expander("点击展开 / 折叠影片列表", expanded = True):
|
226 |
+
for item in movie_list_sorted:
|
227 |
+
circled_halls = " ".join(sorted([get_circled_number(h) for h in item['halls']]))
|
228 |
+
st.markdown(f"**{item['assert_name']}** - {circled_halls} - `{item['content_name']}`")
|
229 |
+
|
230 |
+
# --- View by Hall ---
|
231 |
+
st.markdown("#### 按影厅查看影片内容")
|
232 |
+
hall_tabs = st.tabs(halls_data.keys())
|
233 |
+
for tab, hall_name in zip(hall_tabs, halls_data.keys()):
|
234 |
+
with tab:
|
235 |
+
for movie_item in halls_data[hall_name]:
|
236 |
+
details = movie_item['details']
|
237 |
+
content_name = movie_item['content_name']
|
238 |
+
assert_name = details['assert_name']
|
239 |
+
|
240 |
+
display_name = assert_name if assert_name else content_name
|
241 |
+
circled_halls = " ".join(sorted([get_circled_number(h) for h in details['halls']]))
|
242 |
+
|
243 |
+
st.markdown(f"- **{display_name}** - {circled_halls} - `{content_name}`")
|
244 |
+
|
245 |
+
except Exception as e:
|
246 |
+
st.error(f"查询服务器时出错: {e}")
|