Ethscriptions commited on
Commit
79f26df
·
verified ·
1 Parent(s): 01ac828

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +163 -85
app.py CHANGED
@@ -1,55 +1,38 @@
1
  import streamlit as st
2
  import pandas as pd
3
  import numpy as np
 
 
 
4
 
5
- # 设置页面布局为宽屏模式,并设置页面标题
6
- st.set_page_config(layout="wide", page_title="影城排片效率分析")
7
 
8
 
 
9
  def clean_movie_title(title):
10
- """
11
- 清理并规范化电影标题。
12
- 根据用户最新指示:只保留字符串中第一个空格之前的部分。
13
- """
14
  if not isinstance(title, str):
15
  return title
16
- # 将标题按第一个空格分割,并只取第一部分
17
  return title.split(' ', 1)[0]
18
 
19
 
20
  def style_efficiency(row):
21
- """
22
- 根据效率值高亮特定行。
23
- 高于 1.5 的淡绿色,低于 0.5 的淡红色。
24
- """
25
- # 定义颜色
26
- green = 'background-color: #E6F5E6;' # 淡绿色
27
- red = 'background-color: #FFE5E5;' # 淡红色
28
  default = ''
29
-
30
- # 初始化样式列表,长度与行内元素数量一致
31
  styles = [default] * len(row)
32
-
33
- # 获取效率值
34
  seat_efficiency = row.get('座次效率', 0)
35
  session_efficiency = row.get('场次效率', 0)
36
-
37
- # 判断并应用样式
38
  if seat_efficiency > 1.5 or session_efficiency > 1.5:
39
  styles = [green] * len(row)
40
  elif seat_efficiency < 0.5 or session_efficiency < 0.5:
41
  styles = [red] * len(row)
42
-
43
  return styles
44
 
45
 
46
  def process_and_analyze_data(df):
47
- """
48
- 核心数据处理与分析函数。
49
- """
50
  if df.empty:
51
  return pd.DataFrame()
52
-
53
  analysis_df = df.groupby('影片名称_清理后').agg(
54
  座位数=('座位数', 'sum'),
55
  场次=('影片名称_清理后', 'size'),
@@ -57,112 +40,207 @@ def process_and_analyze_data(df):
57
  人次=('总人次', 'sum')
58
  ).reset_index()
59
  analysis_df.rename(columns={'影片名称_清理后': '影片'}, inplace=True)
60
-
61
  analysis_df = analysis_df.sort_values(by='票房', ascending=False).reset_index(drop=True)
62
-
63
  total_seats = analysis_df['座位数'].sum()
64
  total_sessions = analysis_df['场次'].sum()
65
  total_revenue = analysis_df['票房'].sum()
66
-
67
  analysis_df['均价'] = np.divide(analysis_df['票房'], analysis_df['人次']).fillna(0)
68
  analysis_df['座次比'] = np.divide(analysis_df['座位数'], total_seats).fillna(0)
69
  analysis_df['场次比'] = np.divide(analysis_df['场次'], total_sessions).fillna(0)
70
  analysis_df['票房比'] = np.divide(analysis_df['票房'], total_revenue).fillna(0)
71
  analysis_df['座次效率'] = np.divide(analysis_df['票房比'], analysis_df['座次比']).fillna(0)
72
  analysis_df['场次效率'] = np.divide(analysis_df['票房比'], analysis_df['场次比']).fillna(0)
73
-
74
- final_columns = [
75
- '影片', '座位数', '场次', '票房', '人次', '均价',
76
- '座次比', '场次比', '票房比', '座次效率', '场次效率'
77
- ]
78
  analysis_df = analysis_df[final_columns]
79
-
80
  return analysis_df
81
 
82
 
83
- # --- Streamlit 用户界面 ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84
 
85
- st.title('影城排片效率分析工具')
86
- st.write("上传 `影片映出日累计报表.xlsx` 文件。")
 
 
 
 
 
 
 
87
 
88
  uploaded_file = st.file_uploader("请在此处上传 Excel 文件", type=['xlsx', 'xls', 'csv'])
 
89
 
90
  if uploaded_file is not None:
91
  try:
 
92
  df = pd.read_excel(uploaded_file, skiprows=3, header=None)
93
-
94
- df.rename(columns={
95
- 0: '影片名称', 2: '放映时间', 5: '总人次', 6: '总收入', 7: '座位数'
96
- }, inplace=True)
97
-
98
  required_cols = ['影片名称', '放映时间', '座位数', '总收入', '总人次']
99
  df = df[required_cols]
100
  df.dropna(subset=['影片名称', '放映时间'], inplace=True)
101
-
102
  for col in ['座位数', '总收入', '总人次']:
103
  df[col] = pd.to_numeric(df[col], errors='coerce').fillna(0)
104
-
105
  df['放映时间'] = pd.to_datetime(df['放映时间'], format='%H:%M:%S', errors='coerce').dt.time
106
  df.dropna(subset=['放映时间'], inplace=True)
107
-
108
  df['影片名称_清理后'] = df['影片名称'].apply(clean_movie_title)
 
 
 
 
109
 
110
- st.toast("文件上传成功,数据已按规则处理!", icon="🎉")
111
-
112
- format_config = {
113
- '座位数': '{:,.0f}', '场次': '{:,.0f}', '人次': '{:,.0f}',
114
- '票房': '{:,.2f}', '均价': '{:.2f}', '座次比': '{:.2%}', '场次比': '{:.2%}',
115
- '票房比': '{:.2%}', '座次效率': '{:.2f}', '场次效率': '{:.2f}',
116
- }
117
-
118
- # --- 1. 全天数据分析 ---
119
- st.header("全天排片效率分析")
120
-
121
  full_day_analysis = process_and_analyze_data(df.copy())
122
-
123
  if not full_day_analysis.empty:
124
  table_height = (len(full_day_analysis) + 1) * 35 + 3
125
  st.dataframe(
126
  full_day_analysis.style.format(format_config).apply(style_efficiency, axis=1).hide(axis="index"),
127
- height=table_height,
128
- use_container_width=True,
129
- hide_index=True
130
- )
131
- else:
132
- st.warning("全天数据不足,无法生成分析报告。")
133
-
134
- # --- 2. 黄金时段数据分析 ---
135
- st.header("黄金时段排片效率分析 (14:00-21:00)")
136
-
137
- start_time = pd.to_datetime('14:00:00').time()
138
- end_time = pd.to_datetime('21:00:00').time()
139
- prime_time_df = df[df['放映时间'].between(start_time, end_time)]
140
 
 
 
 
141
  prime_time_analysis = process_and_analyze_data(prime_time_df.copy())
142
-
143
  if not prime_time_analysis.empty:
144
  table_height_prime = (len(prime_time_analysis) + 1) * 35 + 3
145
  st.dataframe(
146
  prime_time_analysis.style.format(format_config).apply(style_efficiency, axis=1).hide(axis="index"),
147
- height=table_height_prime,
148
- use_container_width=True,
149
- hide_index = True
150
- )
151
- else:
152
- st.warning("黄金时段内没有有效场次数据,无法生成分析报告。")
153
-
154
- # --- 3. 一键复制影片列表 ---
155
- if not full_day_analysis.empty:
156
- st.header("复制当日影片列表")
157
 
 
 
158
  movie_titles = full_day_analysis['影片'].tolist()
159
  formatted_titles = ''.join([f'《{title}》' for title in movie_titles])
160
-
161
  st.code(formatted_titles, language='text')
162
 
163
  except Exception as e:
164
  st.error(f"处理文件时出错: {e}")
165
- st.warning("请确保上传的文件是'影片映出日累计报表.xlsx',并且格式正确。")
166
 
167
- else:
168
- st.info("请上传文件以开始分析。")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
  import pandas as pd
3
  import numpy as np
4
+ import requests
5
+ import time
6
+ from collections import defaultdict
7
 
8
+ # Set page layout to wide mode and set page title
9
+ st.set_page_config(layout="wide", page_title="影城效率与内容分析工具")
10
 
11
 
12
+ # --- Efficiency Analysis Functions ---
13
  def clean_movie_title(title):
 
 
 
 
14
  if not isinstance(title, str):
15
  return title
 
16
  return title.split(' ', 1)[0]
17
 
18
 
19
  def style_efficiency(row):
20
+ green = 'background-color: #E6F5E6;' # Light Green
21
+ red = 'background-color: #FFE5E5;' # Light Red
 
 
 
 
 
22
  default = ''
 
 
23
  styles = [default] * len(row)
 
 
24
  seat_efficiency = row.get('座次效率', 0)
25
  session_efficiency = row.get('场次效率', 0)
 
 
26
  if seat_efficiency > 1.5 or session_efficiency > 1.5:
27
  styles = [green] * len(row)
28
  elif seat_efficiency < 0.5 or session_efficiency < 0.5:
29
  styles = [red] * len(row)
 
30
  return styles
31
 
32
 
33
  def process_and_analyze_data(df):
 
 
 
34
  if df.empty:
35
  return pd.DataFrame()
 
36
  analysis_df = df.groupby('影片名称_清理后').agg(
37
  座位数=('座位数', 'sum'),
38
  场次=('影片名称_清理后', 'size'),
 
40
  人次=('总人次', 'sum')
41
  ).reset_index()
42
  analysis_df.rename(columns={'影片名称_清理后': '影片'}, inplace=True)
 
43
  analysis_df = analysis_df.sort_values(by='票房', ascending=False).reset_index(drop=True)
 
44
  total_seats = analysis_df['座位数'].sum()
45
  total_sessions = analysis_df['场次'].sum()
46
  total_revenue = analysis_df['票房'].sum()
 
47
  analysis_df['均价'] = np.divide(analysis_df['票房'], analysis_df['人次']).fillna(0)
48
  analysis_df['座次比'] = np.divide(analysis_df['座位数'], total_seats).fillna(0)
49
  analysis_df['场次比'] = np.divide(analysis_df['场次'], total_sessions).fillna(0)
50
  analysis_df['票房比'] = np.divide(analysis_df['票房'], total_revenue).fillna(0)
51
  analysis_df['座次效率'] = np.divide(analysis_df['票房比'], analysis_df['座次比']).fillna(0)
52
  analysis_df['场次效率'] = np.divide(analysis_df['票房比'], analysis_df['场次比']).fillna(0)
53
+ final_columns = ['影片', '座位数', '场次', '票房', '人次', '均价', '座次比', '场次比', '票房比', '座次效率',
54
+ '场次效率']
 
 
 
55
  analysis_df = analysis_df[final_columns]
 
56
  return analysis_df
57
 
58
 
59
+ # --- New Feature: Server Movie Content Inquiry ---
60
+ @st.cache_data(show_spinner=False)
61
+ def fetch_and_process_server_movies(priority_movie_titles=None):
62
+ if priority_movie_titles is None:
63
+ priority_movie_titles = []
64
+
65
+ # 1. Get Token
66
+ token_headers = {
67
+ 'Host': 'oa.hengdianfilm.com:7080', 'Content-Type': 'application/json',
68
+ 'Origin': 'http://115.239.253.233:7080', 'Connection': 'keep-alive',
69
+ 'Accept': 'application/json, text/javascript, */*; q=0.01',
70
+ 'User-Agent': 'Mozilla/5.0 (iPhone; CPU iPhone OS 18_5_0 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) CriOS/138.0.7204.156 Mobile/15E148 Safari/604.1',
71
+ 'Accept-Language': 'zh-CN,zh-Hans;q=0.9',
72
+ }
73
+ token_json_data = {'appId': 'hd', 'appSecret': 'ad761f8578cc6170', 'timeStamp': int(time.time() * 1000)}
74
+ token_url = 'http://oa.hengdianfilm.com:7080/cinema-api/admin/generateToken?token=hd&murl=?token=hd&murl=ticket=-1495916529737643774'
75
+ response = requests.post(token_url, headers=token_headers, json=token_json_data, timeout=10)
76
+ response.raise_for_status()
77
+ token_data = response.json()
78
+ if token_data.get('error_code') != '0000':
79
+ raise Exception(f"获取Token失败: {token_data.get('error_desc')}")
80
+ auth_token = token_data['param']
81
+
82
+ # 2. Fetch movie list (with pagination and delay)
83
+ all_movies = []
84
+ page_index = 1
85
+ while True:
86
+ list_headers = {
87
+ 'Accept': 'application/json, text/javascript, */*; q=0.01',
88
+ 'Content-Type': 'application/json; charset=UTF-8',
89
+ 'Origin': 'http://115.239.253.233:7080', 'Proxy-Connection': 'keep-alive', 'Token': auth_token,
90
+ 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/138.0.0.0 Safari/537.36',
91
+ 'X-SESSIONID': 'PQ0J3K85GJEDVYIGZE1KEG1K80USDAP4',
92
+ }
93
+ list_params = {'token': 'hd', 'murl': 'ContentMovie'}
94
+ list_json_data = {'THEATER_ID': 38205954, 'SOURCE': 'SERVER', 'ASSERT_TYPE': 2, 'PAGE_CAPACITY': 20,
95
+ 'PAGE_INDEX': page_index}
96
+ list_url = 'http://oa.hengdianfilm.com:7080/cinema-api/cinema/server/dcp/list'
97
+ response = requests.post(list_url, params=list_params, headers=list_headers, json=list_json_data, verify=False)
98
+ response.raise_for_status()
99
+ movie_data = response.json()
100
+ if movie_data.get("RSPCD") != "000000":
101
+ raise Exception(f"获取影片列表失败: {movie_data.get('RSPMSG')}")
102
+ body = movie_data.get("BODY", {})
103
+ movies_on_page = body.get("LIST", [])
104
+ if not movies_on_page: break
105
+ all_movies.extend(movies_on_page)
106
+ if len(all_movies) >= body.get("COUNT", 0): break
107
+ page_index += 1
108
+ time.sleep(1) # Add 1-second delay between requests
109
+
110
+ # 3. Process data into a central, detailed structure
111
+ movie_details = {}
112
+ for movie in all_movies:
113
+ content_name = movie.get('CONTENT_NAME')
114
+ if not content_name: continue
115
+ movie_details[content_name] = {
116
+ 'assert_name': movie.get('ASSERT_NAME'),
117
+ 'halls': sorted([h.get('HALL_NAME') for h in movie.get('HALL_INFO', [])])
118
+ }
119
+
120
+ # 4. Prepare data for the two display views
121
+ # For View by Hall
122
+ by_hall = defaultdict(list)
123
+ for content_name, details in movie_details.items():
124
+ for hall_name in details['halls']:
125
+ by_hall[hall_name].append({'content_name': content_name, 'details': details})
126
+
127
+ for hall_name in by_hall:
128
+ by_hall[hall_name].sort(key=lambda item: (
129
+ item['details']['assert_name'] is None or item['details']['assert_name'] == '',
130
+ item['details']['assert_name'] or item['content_name']
131
+ ))
132
+
133
+ # For View by Movie
134
+ view2_list = []
135
+ for content_name, details in movie_details.items():
136
+ if details.get('assert_name'):
137
+ view2_list.append({
138
+ 'assert_name': details['assert_name'],
139
+ 'content_name': content_name,
140
+ 'halls': details['halls']
141
+ })
142
+
143
+ priority_list = [item for item in view2_list if
144
+ any(p_title in item['assert_name'] for p_title in priority_movie_titles)]
145
+ other_list_items = [item for item in view2_list if item not in priority_list]
146
+
147
+ priority_list.sort(key=lambda x: x['assert_name'])
148
+ other_list_items.sort(key=lambda x: x['assert_name'])
149
+
150
+ final_sorted_list = priority_list + other_list_items
151
+
152
+ return dict(sorted(by_hall.items())), final_sorted_list
153
+
154
 
155
+ def get_circled_number(hall_name):
156
+ mapping = {'1': '①', '2': '②', '3': '③', '4': '④', '5': '⑤', '6': '⑥', '7': '⑦', '8': '⑧', '9': '⑨'}
157
+ num_str = ''.join(filter(str.isdigit, hall_name))
158
+ return mapping.get(num_str, '')
159
+
160
+
161
+ # --- Streamlit Main UI ---
162
+ st.title('影城排片效率与内容分析工具')
163
+ st.write("上传 `影片映出日累计报表.xlsx` 进行效率分析,或点击下方按钮查询 TMS 服务器影片内容。")
164
 
165
  uploaded_file = st.file_uploader("请在此处上传 Excel 文件", type=['xlsx', 'xls', 'csv'])
166
+ full_day_analysis = pd.DataFrame()
167
 
168
  if uploaded_file is not None:
169
  try:
170
+ # Efficiency analysis part
171
  df = pd.read_excel(uploaded_file, skiprows=3, header=None)
172
+ df.rename(columns={0: '影片名称', 2: '放映时间', 5: '总人次', 6: '总收入', 7: '座位数'}, inplace=True)
 
 
 
 
173
  required_cols = ['影片名称', '放映时间', '座位数', '总收入', '总人次']
174
  df = df[required_cols]
175
  df.dropna(subset=['影片名称', '放映时间'], inplace=True)
 
176
  for col in ['座位数', '总收入', '总人次']:
177
  df[col] = pd.to_numeric(df[col], errors='coerce').fillna(0)
 
178
  df['放映时间'] = pd.to_datetime(df['放映时间'], format='%H:%M:%S', errors='coerce').dt.time
179
  df.dropna(subset=['放映时间'], inplace=True)
 
180
  df['影片名称_清理后'] = df['影片名称'].apply(clean_movie_title)
181
+ st.toast("文件上传成功,效率分析已生成!", icon="🎉")
182
+ format_config = {'座位数': '{:,.0f}', '场次': '{:,.0f}', '人次': '{:,.0f}', '票房': '{:,.2f}', '均价': '{:.2f}',
183
+ '座次比': '{:.2%}', '场次比': '{:.2%}', '票房比': '{:.2%}', '座次效率': '{:.2f}',
184
+ '场次效率': '{:.2f}'}
185
 
186
+ st.markdown("### 全天排片效率分析")
 
 
 
 
 
 
 
 
 
 
187
  full_day_analysis = process_and_analyze_data(df.copy())
 
188
  if not full_day_analysis.empty:
189
  table_height = (len(full_day_analysis) + 1) * 35 + 3
190
  st.dataframe(
191
  full_day_analysis.style.format(format_config).apply(style_efficiency, axis=1).hide(axis="index"),
192
+ height=table_height, use_container_width=True)
 
 
 
 
 
 
 
 
 
 
 
 
193
 
194
+ st.markdown("#### 黄金时段排片效率分析 (14:00-21:00)")
195
+ start_time, end_time = pd.to_datetime('14:00:00').time(), pd.to_datetime('21:00:00').time()
196
+ prime_time_df = df[df['放映时间'].between(start_time, end_time)]
197
  prime_time_analysis = process_and_analyze_data(prime_time_df.copy())
 
198
  if not prime_time_analysis.empty:
199
  table_height_prime = (len(prime_time_analysis) + 1) * 35 + 3
200
  st.dataframe(
201
  prime_time_analysis.style.format(format_config).apply(style_efficiency, axis=1).hide(axis="index"),
202
+ height=table_height_prime, use_container_width=True)
 
 
 
 
 
 
 
 
 
203
 
204
+ if not full_day_analysis.empty:
205
+ st.markdown("##### 复制当日排片列表")
206
  movie_titles = full_day_analysis['影片'].tolist()
207
  formatted_titles = ''.join([f'《{title}》' for title in movie_titles])
 
208
  st.code(formatted_titles, language='text')
209
 
210
  except Exception as e:
211
  st.error(f"处理文件时出错: {e}")
 
212
 
213
+
214
+ # --- New Feature Module ---
215
+ st.markdown("### TMS 服务器影片内容查询")
216
+ if st.button('点击查询 TMS 服务器'):
217
+ with st.spinner("正在从 TMS 服务器获取数据中,请稍候..."):
218
+ try:
219
+ priority_titles = full_day_analysis['影片'].tolist() if not full_day_analysis.empty else []
220
+ halls_data, movie_list_sorted = fetch_and_process_server_movies(priority_titles)
221
+ st.toast("TMS 服务器数据获取成功!", icon="🎉")
222
+
223
+ # --- View by Movie (in a single expander) ---
224
+ st.markdown("#### 按影片查看所在影厅")
225
+ with st.expander("点击展开 / 折叠影片列表", expanded = True):
226
+ for item in movie_list_sorted:
227
+ circled_halls = " ".join(sorted([get_circled_number(h) for h in item['halls']]))
228
+ st.markdown(f"**{item['assert_name']}** - {circled_halls} - `{item['content_name']}`")
229
+
230
+ # --- View by Hall ---
231
+ st.markdown("#### 按影厅查看影片内容")
232
+ hall_tabs = st.tabs(halls_data.keys())
233
+ for tab, hall_name in zip(hall_tabs, halls_data.keys()):
234
+ with tab:
235
+ for movie_item in halls_data[hall_name]:
236
+ details = movie_item['details']
237
+ content_name = movie_item['content_name']
238
+ assert_name = details['assert_name']
239
+
240
+ display_name = assert_name if assert_name else content_name
241
+ circled_halls = " ".join(sorted([get_circled_number(h) for h in details['halls']]))
242
+
243
+ st.markdown(f"- **{display_name}** - {circled_halls} - `{content_name}`")
244
+
245
+ except Exception as e:
246
+ st.error(f"查询服务器时出错: {e}")