Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ import numpy as np
|
|
5 |
# 设置页面布局为宽屏模式,并设置页面标题
|
6 |
st.set_page_config(layout="wide", page_title="影城效率分析 - 最终版")
|
7 |
|
|
|
8 |
def clean_movie_title(title):
|
9 |
"""
|
10 |
清理并规范化电影标题。
|
@@ -15,6 +16,7 @@ def clean_movie_title(title):
|
|
15 |
# 将标题按第一个空格分割,并只取第一部分
|
16 |
return title.split(' ', 1)[0]
|
17 |
|
|
|
18 |
def style_efficiency(row):
|
19 |
"""
|
20 |
根据效率值高亮特定行。
|
@@ -25,10 +27,11 @@ def style_efficiency(row):
|
|
25 |
seat_efficiency = row.get('座次效率', 0)
|
26 |
session_efficiency = row.get('场次效率', 0)
|
27 |
if (seat_efficiency < 0.5 or seat_efficiency > 1.5 or
|
28 |
-
|
29 |
return [highlight] * len(row)
|
30 |
return [default] * len(row)
|
31 |
|
|
|
32 |
def process_and_analyze_data(df):
|
33 |
"""
|
34 |
核心数据处理与分析函数。
|
@@ -43,7 +46,7 @@ def process_and_analyze_data(df):
|
|
43 |
人次=('总人次', 'sum')
|
44 |
).reset_index()
|
45 |
analysis_df.rename(columns={'影片名称_清理后': '影片'}, inplace=True)
|
46 |
-
|
47 |
analysis_df = analysis_df.sort_values(by='票房', ascending=False).reset_index(drop=True)
|
48 |
|
49 |
total_seats = analysis_df['座位数'].sum()
|
@@ -56,26 +59,27 @@ def process_and_analyze_data(df):
|
|
56 |
analysis_df['票房比'] = np.divide(analysis_df['票房'], total_revenue).fillna(0)
|
57 |
analysis_df['座次效率'] = np.divide(analysis_df['票房比'], analysis_df['座次比']).fillna(0)
|
58 |
analysis_df['场次效率'] = np.divide(analysis_df['票房比'], analysis_df['场次比']).fillna(0)
|
59 |
-
|
60 |
final_columns = [
|
61 |
-
'影片', '座位数', '场次', '票房', '人次', '均价',
|
62 |
'座次比', '场次比', '票房比', '座次效率', '场次效率'
|
63 |
]
|
64 |
analysis_df = analysis_df[final_columns]
|
65 |
-
|
66 |
return analysis_df
|
67 |
|
|
|
68 |
# --- Streamlit 用户界面 ---
|
69 |
|
70 |
-
st.title('
|
71 |
-
st.write("上传 `影片映出日累计报表.xlsx`
|
72 |
|
73 |
uploaded_file = st.file_uploader("请在此处上传 Excel 文件", type=['xlsx', 'xls', 'csv'])
|
74 |
|
75 |
if uploaded_file is not None:
|
76 |
try:
|
77 |
df = pd.read_excel(uploaded_file, skiprows=3, header=None)
|
78 |
-
|
79 |
df.rename(columns={
|
80 |
0: '影片名称', 2: '放映时间', 5: '总人次', 6: '总收入', 7: '座位数'
|
81 |
}, inplace=True)
|
@@ -89,11 +93,11 @@ if uploaded_file is not None:
|
|
89 |
|
90 |
df['放映时间'] = pd.to_datetime(df['放映时间'], format='%H:%M:%S', errors='coerce').dt.time
|
91 |
df.dropna(subset=['放映时间'], inplace=True)
|
92 |
-
|
93 |
df['影片名称_清理后'] = df['影片名称'].apply(clean_movie_title)
|
94 |
|
95 |
-
st.
|
96 |
-
|
97 |
format_config = {
|
98 |
'座位数': '{:,.0f}', '场次': '{:,.0f}', '人次': '{:,.0f}',
|
99 |
'票房': '{:,.2f}', '均价': '{:.2f}', '座次比': '{:.2%}', '场次比': '{:.2%}',
|
@@ -101,11 +105,10 @@ if uploaded_file is not None:
|
|
101 |
}
|
102 |
|
103 |
# --- 1. 全天数据分析 ---
|
104 |
-
st.header("
|
105 |
-
|
106 |
-
|
107 |
full_day_analysis = process_and_analyze_data(df.copy())
|
108 |
-
|
109 |
if not full_day_analysis.empty:
|
110 |
table_height = (len(full_day_analysis) + 1) * 35 + 3
|
111 |
st.dataframe(
|
@@ -117,14 +120,14 @@ if uploaded_file is not None:
|
|
117 |
st.warning("全天数据不足,无法生成分析报告。")
|
118 |
|
119 |
# --- 2. 黄金时段数据分析 ---
|
120 |
-
st.header("
|
121 |
-
|
122 |
start_time = pd.to_datetime('14:00:00').time()
|
123 |
end_time = pd.to_datetime('21:00:00').time()
|
124 |
prime_time_df = df[df['放映时间'].between(start_time, end_time)]
|
125 |
|
126 |
prime_time_analysis = process_and_analyze_data(prime_time_df.copy())
|
127 |
-
|
128 |
if not prime_time_analysis.empty:
|
129 |
table_height_prime = (len(prime_time_analysis) + 1) * 35 + 3
|
130 |
st.dataframe(
|
@@ -134,15 +137,14 @@ if uploaded_file is not None:
|
|
134 |
)
|
135 |
else:
|
136 |
st.warning("黄金时段内没有有效场次数据,无法生成分析报告。")
|
137 |
-
|
138 |
# --- 3. 一键复制影片列表 ---
|
139 |
if not full_day_analysis.empty:
|
140 |
st.header("复制当日影片列表")
|
141 |
-
|
142 |
-
|
143 |
movie_titles = full_day_analysis['影片'].tolist()
|
144 |
formatted_titles = ''.join([f'《{title}》' for title in movie_titles])
|
145 |
-
|
146 |
st.code(formatted_titles, language='text')
|
147 |
|
148 |
except Exception as e:
|
|
|
5 |
# 设置页面布局为宽屏模式,并设置页面标题
|
6 |
st.set_page_config(layout="wide", page_title="影城效率分析 - 最终版")
|
7 |
|
8 |
+
|
9 |
def clean_movie_title(title):
|
10 |
"""
|
11 |
清理并规范化电影标题。
|
|
|
16 |
# 将标题按第一个空格分割,并只取第一部分
|
17 |
return title.split(' ', 1)[0]
|
18 |
|
19 |
+
|
20 |
def style_efficiency(row):
|
21 |
"""
|
22 |
根据效率值高亮特定行。
|
|
|
27 |
seat_efficiency = row.get('座次效率', 0)
|
28 |
session_efficiency = row.get('场次效率', 0)
|
29 |
if (seat_efficiency < 0.5 or seat_efficiency > 1.5 or
|
30 |
+
session_efficiency < 0.5 or session_efficiency > 1.5):
|
31 |
return [highlight] * len(row)
|
32 |
return [default] * len(row)
|
33 |
|
34 |
+
|
35 |
def process_and_analyze_data(df):
|
36 |
"""
|
37 |
核心数据处理与分析函数。
|
|
|
46 |
人次=('总人次', 'sum')
|
47 |
).reset_index()
|
48 |
analysis_df.rename(columns={'影片名称_清理后': '影片'}, inplace=True)
|
49 |
+
|
50 |
analysis_df = analysis_df.sort_values(by='票房', ascending=False).reset_index(drop=True)
|
51 |
|
52 |
total_seats = analysis_df['座位数'].sum()
|
|
|
59 |
analysis_df['票房比'] = np.divide(analysis_df['票房'], total_revenue).fillna(0)
|
60 |
analysis_df['座次效率'] = np.divide(analysis_df['票房比'], analysis_df['座次比']).fillna(0)
|
61 |
analysis_df['场次效率'] = np.divide(analysis_df['票房比'], analysis_df['场次比']).fillna(0)
|
62 |
+
|
63 |
final_columns = [
|
64 |
+
'影片', '座位数', '场次', '票房', '人次', '均价',
|
65 |
'座次比', '场次比', '票房比', '座次效率', '场次效率'
|
66 |
]
|
67 |
analysis_df = analysis_df[final_columns]
|
68 |
+
|
69 |
return analysis_df
|
70 |
|
71 |
+
|
72 |
# --- Streamlit 用户界面 ---
|
73 |
|
74 |
+
st.title('排片效率分析工具')
|
75 |
+
st.write("上传 `影片映出日累计报表.xlsx` 文件。")
|
76 |
|
77 |
uploaded_file = st.file_uploader("请在此处上传 Excel 文件", type=['xlsx', 'xls', 'csv'])
|
78 |
|
79 |
if uploaded_file is not None:
|
80 |
try:
|
81 |
df = pd.read_excel(uploaded_file, skiprows=3, header=None)
|
82 |
+
|
83 |
df.rename(columns={
|
84 |
0: '影片名称', 2: '放映时间', 5: '总人次', 6: '总收入', 7: '座位数'
|
85 |
}, inplace=True)
|
|
|
93 |
|
94 |
df['放映时间'] = pd.to_datetime(df['放映时间'], format='%H:%M:%S', errors='coerce').dt.time
|
95 |
df.dropna(subset=['放映时间'], inplace=True)
|
96 |
+
|
97 |
df['影片名称_清理后'] = df['影片名称'].apply(clean_movie_title)
|
98 |
|
99 |
+
st.toast("文件上传成功,数据已按规则处理!", icon="🎉")
|
100 |
+
|
101 |
format_config = {
|
102 |
'座位数': '{:,.0f}', '场次': '{:,.0f}', '人次': '{:,.0f}',
|
103 |
'票房': '{:,.2f}', '均价': '{:.2f}', '座次比': '{:.2%}', '场次比': '{:.2%}',
|
|
|
105 |
}
|
106 |
|
107 |
# --- 1. 全天数据分析 ---
|
108 |
+
st.header("全天排片效率分析")
|
109 |
+
|
|
|
110 |
full_day_analysis = process_and_analyze_data(df.copy())
|
111 |
+
|
112 |
if not full_day_analysis.empty:
|
113 |
table_height = (len(full_day_analysis) + 1) * 35 + 3
|
114 |
st.dataframe(
|
|
|
120 |
st.warning("全天数据不足,无法生成分析报告。")
|
121 |
|
122 |
# --- 2. 黄金时段数据分析 ---
|
123 |
+
st.header("黄金时段排片效率分析")
|
124 |
+
|
125 |
start_time = pd.to_datetime('14:00:00').time()
|
126 |
end_time = pd.to_datetime('21:00:00').time()
|
127 |
prime_time_df = df[df['放映时间'].between(start_time, end_time)]
|
128 |
|
129 |
prime_time_analysis = process_and_analyze_data(prime_time_df.copy())
|
130 |
+
|
131 |
if not prime_time_analysis.empty:
|
132 |
table_height_prime = (len(prime_time_analysis) + 1) * 35 + 3
|
133 |
st.dataframe(
|
|
|
137 |
)
|
138 |
else:
|
139 |
st.warning("黄金时段内没有有效场次数据,无法生成分析报告。")
|
140 |
+
|
141 |
# --- 3. 一键复制影片列表 ---
|
142 |
if not full_day_analysis.empty:
|
143 |
st.header("复制当日影片列表")
|
144 |
+
|
|
|
145 |
movie_titles = full_day_analysis['影片'].tolist()
|
146 |
formatted_titles = ''.join([f'《{title}》' for title in movie_titles])
|
147 |
+
|
148 |
st.code(formatted_titles, language='text')
|
149 |
|
150 |
except Exception as e:
|