File size: 8,576 Bytes
c8dda34
 
 
 
 
 
 
4e99405
892d7ed
c8dda34
a54c9ae
 
 
 
672bd6c
c8dda34
 
5cdc7e0
 
 
 
 
 
 
 
 
 
 
 
d99d789
 
5cdc7e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
892d7ed
5cdc7e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8dda34
c1f32de
5cdc7e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
892d7ed
 
 
 
5cdc7e0
 
 
 
 
 
 
 
 
892d7ed
5cdc7e0
892d7ed
 
5cdc7e0
892d7ed
5cdc7e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
892d7ed
 
 
 
5cdc7e0
 
 
 
892d7ed
5cdc7e0
892d7ed
5cdc7e0
 
892d7ed
 
5cdc7e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8dda34
 
 
 
 
85c97e3
c8dda34
 
5cdc7e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d3c2a0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import pandas as pd
import streamlit as st
from datetime import datetime, timedelta
import matplotlib.pyplot as plt
import io
import base64
import matplotlib.gridspec as gridspec
import math
import re

SPLIT_TIME = "17:30"
BUSINESS_START = "09:30"
BUSINESS_END = "01:30"
BORDER_COLOR = '#A9A9A9'
DATE_COLOR = '#A9A9A9'

def process_schedule(file):
    """处理上传的 Excel 文件,生成排序和分组后的打印内容"""
    try:
        # 读取 Excel,跳过前 8 行
        df = pd.read_excel(file, skiprows=8)
        
        # 提取所需列 (G9, H9, J9)
        df = df.iloc[:, [6, 7, 9]]  # G, H, J 列
        df.columns = ['Hall', 'StartTime', 'EndTime']
        
        # 清理数据
        df = df.dropna(subset=['Hall', 'StartTime', 'EndTime'])
        
        # 转换影厅格式为带LaTeX上标井号
        df['Hall'] = df['Hall'].str.extract(r'(\d+)号').astype(str) + r'$^{\#}$'
        
        # 保存原始时间字符串用于诊断
        df['original_end'] = df['EndTime']
        
        # 转换时间为 datetime 对象
        base_date = datetime.today().date()
        df['StartTime'] = pd.to_datetime(df['StartTime'])
        df['EndTime'] = pd.to_datetime(df['EndTime'])
        
        # 设置基准时间
        business_start = datetime.strptime(f"{base_date} {BUSINESS_START}", "%Y-%m-%d %H:%M")
        business_end = datetime.strptime(f"{base_date} {BUSINESS_END}", "%Y-%m-%d %H:%M")
        
        # 处理跨天情况
        if business_end < business_start:
            business_end += timedelta(days=1)
        
        # 标准化所有时间到同一天
        for idx, row in df.iterrows():
            end_time = row['EndTime']
            if end_time.hour < 9:
                df.at[idx, 'EndTime'] = end_time + timedelta(days=1)
            
            if row['StartTime'].hour >= 21 and end_time.hour < 9:
                df.at[idx, 'EndTime'] = end_time + timedelta(days=1)
        
        # 筛选营业时间内的场次
        df['time_for_comparison'] = df['EndTime'].apply(
            lambda x: datetime.combine(base_date, x.time())
        )
        
        df.loc[df['time_for_comparison'].dt.hour < 9, 'time_for_comparison'] += timedelta(days=1)
        
        valid_times = (
            ((df['time_for_comparison'] >= datetime.combine(base_date, business_start.time())) &
            (df['time_for_comparison'] <= datetime.combine(base_date + timedelta(days=1), business_end.time()))
        )
        
        df = df[valid_times]
        
        # 按散场时间排序
        df = df.sort_values('EndTime')
        
        # 分割数据
        split_time = datetime.strptime(f"{base_date} {SPLIT_TIME}", "%Y-%m-%d %H:%M")
        split_time_for_comparison = df['time_for_comparison'].apply(
            lambda x: datetime.combine(base_date, split_time.time())
        )
        
        part1 = df[df['time_for_comparison'] <= split_time_for_comparison].copy()
        part2 = df[df['time_for_comparison'] > split_time_for_comparison].copy()
        
        # 格式化时间显示
        for part in [part1, part2]:
            part['EndTime'] = part['EndTime'].dt.strftime('%-I:%M')
        
        # 读取日期信息
        date_df = pd.read_excel(
            file,
            skiprows=5,
            nrows=1,
            usecols=[2],
            header=None
        )
        date_cell = date_df.iloc[0, 0]
        
        try:
            if isinstance(date_cell, str):
                date_str = datetime.strptime(date_cell, '%Y-%m-%d').strftime('%Y-%m-%d')
            else:
                date_str = pd.to_datetime(date_cell).strftime('%Y-%m-%d')
        except:
            date_str = datetime.today().strftime('%Y-%m-%d')
        
        return part1[['Hall', 'EndTime']], part2[['Hall', 'EndTime']], date_str
    
    except Exception as e:
        st.error(f"处理文件时出错: {str(e)}")
        return None, None, None

def create_print_layout(data, title, date_str):
    """创建打印布局"""
    if data.empty:
        return None
        
    # 设置 A5 纸张横向尺寸
    fig = plt.figure(figsize=(5.83, 8.27), dpi=300)
    plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05)
    
    # 设置字体
    plt.rcParams['font.family'] = 'sans-serif'
    plt.rcParams['font.sans-serif'] = ['Arial Unicode MS']
    
    # 计算行数和总数
    total_items = len(data)
    num_cols = 3
    num_rows = math.ceil(total_items / num_cols)
    
    # 创建网格(优化间距参数)
    gs = gridspec.GridSpec(num_rows + 1, num_cols, 
                         hspace=0.2, wspace=0.2,  # 增加行列间距
                         height_ratios=[1.2] * num_rows + [0.2])
    
    # 计算最大字符数
    max_char_count = 0
    for hall, end_time in data.values:
        clean_hall = re.sub(r'\$.*?\$', '#', hall)
        clean_text = f"{clean_hall}{end_time}"
        current_count = len(clean_text)
        max_char_count = max(max_char_count, current_count)
    
    # 动态计算基础字号(优化计算参数)
    cell_width_inches = 5.83 / 3  # 每列宽度(A5横向)
    available_width = cell_width_inches * 0.65 * 72  # 可用宽度减少到65%
    avg_char_width = 0.8  # 加粗字体宽度系数
    base_fontsize = available_width / (max_char_count * avg_char_width)
    base_fontsize = min(26, base_fontsize)  # 设置最大字号限制
    
    # 填充数据
    data_values = data.values.tolist()
    while len(data_values) % 3 != 0:
        data_values.append(['', ''])
        
    sorted_data = [['', '']] * len(data_values)
    
    for i, item in enumerate(data_values):
        if item[0] and item[1]:
            row = i % math.ceil(len(data_values)/3)
            col = i // math.ceil(len(data_values)/3)
            new_index = row * 3 + col
            if new_index < len(sorted_data):
                sorted_data[new_index] = item
    
    for idx, (hall, end_time) in enumerate(sorted_data):
        if hall and end_time:
            row = idx // 3
            col = idx % 3
            
            ax = plt.subplot(gs[row, col])
            
            # 设置单元格边界范围(增加内边距)
            ax.set_xlim(0.1, 0.9)  # 左右各留10%边距
            ax.set_ylim(0.1, 0.9)  # 上下各留10%边距
            
            for spine in ax.spines.values():
                spine.set_color(BORDER_COLOR)
                spine.set_linewidth(0.5)
            
            # 添加文本(字号缩小5%)
            ax.text(0.5, 0.5, f"{hall}{end_time}",
                    fontsize=base_fontsize*0.95,
                    fontweight='bold',
                    ha='center',
                    va='center',
                    transform=ax.transAxes)
            
            ax.set_xticks([])
            ax.set_yticks([])
    
    # 添加日期信息
    ax_date = plt.subplot(gs[0, 0])
    ax_date.text(0.05, 0.95, f"{date_str} {title}",
                 fontsize=base_fontsize * 0.4,
                 color=DATE_COLOR,
                 fontweight='bold',
                 ha='left',
                 va='top')
    
    for spine in ax_date.spines.values():
        spine.set_visible(False)
    ax_date.set_xticks([])
    ax_date.set_yticks([])
    
    # 转换为图片
    buffer = io.BytesIO()
    plt.savefig(buffer, format='png', bbox_inches='tight', pad_inches=0.05)
    buffer.seek(0)
    image_base64 = base64.b64encode(buffer.getvalue()).decode()
    plt.close()
    
    return f'data:image/png;base64,{image_base64}'

# Streamlit 界面
st.set_page_config(page_title="散厅时间快捷打印", layout="wide")
st.title("散厅时间快捷打印")

uploaded_file = st.file_uploader("上传【放映场次核对表.xls】文件", type=["xls", "xlsx"])

if uploaded_file:
    part1, part2, date_str = process_schedule(uploaded_file)
    
    if part1 is not None and part2 is not None:
        part1_image = create_print_layout(part1, "A", date_str)
        part2_image = create_print_layout(part2, "C", date_str)
        
        col1, col2 = st.columns(2)
        
        with col1:
            st.subheader("白班散场预览(时间 ≤ 17:30)")
            if part1_image:
                st.image(part1_image)
            else:
                st.info("白班部分没有数据")
        
        with col2:
            st.subheader("夜班散场预览(时间 > 17:30)")
            if part2_image:
                st.image(part2_image)
            else:
                st.info("夜班部分没有数据")