Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -8,61 +8,43 @@ from matplotlib.patches import Rectangle
|
|
8 |
import matplotlib.gridspec as gridspec
|
9 |
import math
|
10 |
|
11 |
-
#
|
12 |
-
SPLIT_TIME = "17:30"
|
13 |
-
BUSINESS_START = "09:30"
|
14 |
-
BUSINESS_END = "01:30"
|
15 |
-
BORDER_COLOR = '#A9A9A9'
|
16 |
|
17 |
def process_schedule(file):
|
18 |
"""处理上传的 Excel 文件,生成排序和分组后的打印内容"""
|
19 |
try:
|
20 |
-
# 读取 Excel,跳过前 8 行
|
21 |
df = pd.read_excel(file, skiprows=8)
|
22 |
-
|
23 |
-
# 提取所需列 (G9, H9, J9)
|
24 |
-
df = df.iloc[:, [6, 7, 9]] # G, H, J 列
|
25 |
df.columns = ['Hall', 'StartTime', 'EndTime']
|
26 |
-
|
27 |
-
# 清理数据
|
28 |
df = df.dropna(subset=['Hall', 'StartTime', 'EndTime'])
|
29 |
-
|
30 |
-
# 转换影厅格式为 "#号" 格式
|
31 |
df['Hall'] = df['Hall'].str.extract(r'(\d+)号').astype(str) + '#'
|
32 |
-
|
33 |
-
# 转换时间格式
|
34 |
df['StartTime'] = pd.to_datetime(df['StartTime']).dt.strftime('%H:%M')
|
35 |
df['EndTime'] = pd.to_datetime(df['EndTime']).dt.strftime('%H:%M')
|
36 |
|
37 |
-
# 将时间转换为 datetime 对象便于比较
|
38 |
base_date = datetime.today().date()
|
39 |
df['StartTime'] = pd.to_datetime(base_date.strftime('%Y-%m-%d ') + df['StartTime'])
|
40 |
df['EndTime'] = pd.to_datetime(base_date.strftime('%Y-%m-%d ') + df['EndTime'])
|
41 |
|
42 |
-
# 处理跨天情况
|
43 |
df.loc[df['EndTime'] < df['StartTime'], 'EndTime'] += timedelta(days=1)
|
44 |
|
45 |
-
# 筛选营业时间内的场次
|
46 |
business_start = datetime.strptime(base_date.strftime('%Y-%m-%d ') + BUSINESS_START, '%Y-%m-%d %H:%M')
|
47 |
business_end = datetime.strptime(base_date.strftime('%Y-%m-%d ') + BUSINESS_END, '%Y-%m-%d %H:%M')
|
48 |
if business_end < business_start:
|
49 |
business_end += timedelta(days=1)
|
50 |
|
51 |
-
mask = (
|
52 |
-
(df['StartTime'] >= business_start) |
|
53 |
-
(df['StartTime'] <= business_end)
|
54 |
-
)
|
55 |
df = df[mask]
|
56 |
|
57 |
-
# 按散场时间排序
|
58 |
df = df.sort_values('EndTime')
|
59 |
|
60 |
-
# 分割数据
|
61 |
split_time = datetime.strptime(base_date.strftime('%Y-%m-%d ') + SPLIT_TIME, '%Y-%m-%d %H:%M')
|
62 |
part1 = df[df['EndTime'] <= split_time].copy()
|
63 |
part2 = df[df['EndTime'] > split_time].copy()
|
64 |
|
65 |
-
# 格式化时间显示
|
66 |
for part in [part1, part2]:
|
67 |
part['EndTime'] = part['EndTime'].dt.strftime('%-I:%M')
|
68 |
|
@@ -77,66 +59,70 @@ def create_print_layout(data, title):
|
|
77 |
if data.empty:
|
78 |
return None
|
79 |
|
80 |
-
# 设置 A5
|
81 |
fig = plt.figure(figsize=(5.83, 8.27), dpi=300)
|
82 |
-
|
83 |
-
# 减小边距,最大化利用空间
|
84 |
plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05)
|
85 |
|
86 |
-
#
|
|
|
|
|
|
|
|
|
87 |
total_items = len(data)
|
88 |
-
num_cols = 3
|
89 |
-
num_rows = math.ceil(total_items / num_cols)
|
90 |
|
91 |
-
#
|
92 |
gs = gridspec.GridSpec(num_rows, num_cols, hspace=0.1, wspace=0.1)
|
93 |
|
94 |
-
#
|
95 |
-
|
96 |
-
plt.rcParams['font.sans-serif'] = ['SimHei'] # 中文字体
|
97 |
-
|
98 |
-
# 计算适合的字体大小(考虑到竖向布局和3列)
|
99 |
-
base_fontsize = min(50, 280 / num_rows) # 调整基础字体大小
|
100 |
|
101 |
-
#
|
102 |
-
reshaped_data = []
|
103 |
data_values = data.values.tolist()
|
104 |
|
105 |
-
#
|
106 |
while len(data_values) % 3 != 0:
|
107 |
data_values.append(['', ''])
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
-
#
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
116 |
|
117 |
# 填充数据
|
118 |
-
for idx, (hall, end_time) in enumerate(
|
119 |
if hall and end_time: # 只处理非空数据
|
120 |
row = idx // 3
|
121 |
col = idx % 3
|
122 |
|
123 |
-
# 创建子图
|
124 |
ax = plt.subplot(gs[row, col])
|
125 |
|
126 |
-
#
|
127 |
for spine in ax.spines.values():
|
128 |
spine.set_color(BORDER_COLOR)
|
129 |
spine.set_linewidth(0.5)
|
130 |
|
131 |
-
#
|
132 |
display_text = f"{hall}{end_time}"
|
133 |
ax.text(0.5, 0.5, display_text,
|
134 |
-
fontsize=base_fontsize,
|
135 |
-
fontweight='bold',
|
136 |
-
ha='center',
|
137 |
va='center')
|
138 |
|
139 |
-
#
|
140 |
ax.set_xlim(-0.02, 1.02)
|
141 |
ax.set_ylim(-0.02, 1.02)
|
142 |
|
@@ -144,7 +130,7 @@ def create_print_layout(data, title):
|
|
144 |
ax.set_xticks([])
|
145 |
ax.set_yticks([])
|
146 |
|
147 |
-
#
|
148 |
buffer = io.BytesIO()
|
149 |
plt.savefig(buffer, format='png', bbox_inches='tight', pad_inches=0.05)
|
150 |
buffer.seek(0)
|
|
|
8 |
import matplotlib.gridspec as gridspec
|
9 |
import math
|
10 |
|
11 |
+
# [前面的常量定义和 process_schedule 函数保持不变]
|
12 |
+
SPLIT_TIME = "17:30"
|
13 |
+
BUSINESS_START = "09:30"
|
14 |
+
BUSINESS_END = "01:30"
|
15 |
+
BORDER_COLOR = '#A9A9A9'
|
16 |
|
17 |
def process_schedule(file):
|
18 |
"""处理上传的 Excel 文件,生成排序和分组后的打印内容"""
|
19 |
try:
|
|
|
20 |
df = pd.read_excel(file, skiprows=8)
|
21 |
+
df = df.iloc[:, [6, 7, 9]]
|
|
|
|
|
22 |
df.columns = ['Hall', 'StartTime', 'EndTime']
|
|
|
|
|
23 |
df = df.dropna(subset=['Hall', 'StartTime', 'EndTime'])
|
|
|
|
|
24 |
df['Hall'] = df['Hall'].str.extract(r'(\d+)号').astype(str) + '#'
|
|
|
|
|
25 |
df['StartTime'] = pd.to_datetime(df['StartTime']).dt.strftime('%H:%M')
|
26 |
df['EndTime'] = pd.to_datetime(df['EndTime']).dt.strftime('%H:%M')
|
27 |
|
|
|
28 |
base_date = datetime.today().date()
|
29 |
df['StartTime'] = pd.to_datetime(base_date.strftime('%Y-%m-%d ') + df['StartTime'])
|
30 |
df['EndTime'] = pd.to_datetime(base_date.strftime('%Y-%m-%d ') + df['EndTime'])
|
31 |
|
|
|
32 |
df.loc[df['EndTime'] < df['StartTime'], 'EndTime'] += timedelta(days=1)
|
33 |
|
|
|
34 |
business_start = datetime.strptime(base_date.strftime('%Y-%m-%d ') + BUSINESS_START, '%Y-%m-%d %H:%M')
|
35 |
business_end = datetime.strptime(base_date.strftime('%Y-%m-%d ') + BUSINESS_END, '%Y-%m-%d %H:%M')
|
36 |
if business_end < business_start:
|
37 |
business_end += timedelta(days=1)
|
38 |
|
39 |
+
mask = (df['StartTime'] >= business_start) | (df['StartTime'] <= business_end)
|
|
|
|
|
|
|
40 |
df = df[mask]
|
41 |
|
|
|
42 |
df = df.sort_values('EndTime')
|
43 |
|
|
|
44 |
split_time = datetime.strptime(base_date.strftime('%Y-%m-%d ') + SPLIT_TIME, '%Y-%m-%d %H:%M')
|
45 |
part1 = df[df['EndTime'] <= split_time].copy()
|
46 |
part2 = df[df['EndTime'] > split_time].copy()
|
47 |
|
|
|
48 |
for part in [part1, part2]:
|
49 |
part['EndTime'] = part['EndTime'].dt.strftime('%-I:%M')
|
50 |
|
|
|
59 |
if data.empty:
|
60 |
return None
|
61 |
|
62 |
+
# 设置 A5 纸张竖向尺寸
|
63 |
fig = plt.figure(figsize=(5.83, 8.27), dpi=300)
|
|
|
|
|
64 |
plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05)
|
65 |
|
66 |
+
# 设置字体
|
67 |
+
plt.rcParams['font.family'] = 'sans-serif'
|
68 |
+
plt.rcParams['font.sans-serif'] = ['SimHei']
|
69 |
+
|
70 |
+
# 计算行数和总数
|
71 |
total_items = len(data)
|
72 |
+
num_cols = 3
|
73 |
+
num_rows = math.ceil(total_items / num_cols)
|
74 |
|
75 |
+
# 创建网格
|
76 |
gs = gridspec.GridSpec(num_rows, num_cols, hspace=0.1, wspace=0.1)
|
77 |
|
78 |
+
# 计算字体大小
|
79 |
+
base_fontsize = min(50, 280 / num_rows)
|
|
|
|
|
|
|
|
|
80 |
|
81 |
+
# 重要改动:正确的竖向排序逻辑
|
|
|
82 |
data_values = data.values.tolist()
|
83 |
|
84 |
+
# 确保数据长度是3的倍数
|
85 |
while len(data_values) % 3 != 0:
|
86 |
data_values.append(['', ''])
|
87 |
+
|
88 |
+
# 计算每列应该包含的行数
|
89 |
+
rows_per_col = math.ceil(len(data_values) / 3)
|
90 |
+
|
91 |
+
# 创建一个新的数据列表,用于存储重新排序后的数据
|
92 |
+
sorted_data = [['', '']] * len(data_values)
|
93 |
|
94 |
+
# 正确的竖向排序逻辑
|
95 |
+
for i, item in enumerate(data_values):
|
96 |
+
if item[0] and item[1]: # 只处理非空数据
|
97 |
+
# 计算���的位置
|
98 |
+
row = i % rows_per_col
|
99 |
+
col = i // rows_per_col
|
100 |
+
new_index = row * 3 + col
|
101 |
+
if new_index < len(sorted_data):
|
102 |
+
sorted_data[new_index] = item
|
103 |
|
104 |
# 填充数据
|
105 |
+
for idx, (hall, end_time) in enumerate(sorted_data):
|
106 |
if hall and end_time: # 只处理非空数据
|
107 |
row = idx // 3
|
108 |
col = idx % 3
|
109 |
|
|
|
110 |
ax = plt.subplot(gs[row, col])
|
111 |
|
112 |
+
# 设置边框
|
113 |
for spine in ax.spines.values():
|
114 |
spine.set_color(BORDER_COLOR)
|
115 |
spine.set_linewidth(0.5)
|
116 |
|
117 |
+
# 显示文本
|
118 |
display_text = f"{hall}{end_time}"
|
119 |
ax.text(0.5, 0.5, display_text,
|
120 |
+
fontsize=base_fontsize,
|
121 |
+
fontweight='bold',
|
122 |
+
ha='center',
|
123 |
va='center')
|
124 |
|
125 |
+
# 设置边距
|
126 |
ax.set_xlim(-0.02, 1.02)
|
127 |
ax.set_ylim(-0.02, 1.02)
|
128 |
|
|
|
130 |
ax.set_xticks([])
|
131 |
ax.set_yticks([])
|
132 |
|
133 |
+
# 转换为图片
|
134 |
buffer = io.BytesIO()
|
135 |
plt.savefig(buffer, format='png', bbox_inches='tight', pad_inches=0.05)
|
136 |
buffer.seek(0)
|