Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@ import io
|
|
6 |
import base64
|
7 |
import matplotlib.gridspec as gridspec
|
8 |
import math
|
|
|
9 |
|
10 |
SPLIT_TIME = "17:30"
|
11 |
BUSINESS_START = "09:30"
|
@@ -14,187 +15,196 @@ BORDER_COLOR = '#A9A9A9'
|
|
14 |
DATE_COLOR = '#A9A9A9'
|
15 |
|
16 |
def process_schedule(file):
|
17 |
-
"""处理上传的 Excel 文件,生成排序和分组后的打印内容"""
|
18 |
-
try:
|
19 |
-
# 读取 Excel,跳过前 8 行
|
20 |
-
df = pd.read_excel(file, skiprows=8)
|
21 |
-
|
22 |
-
# 提取所需列 (G9, H9, J9)
|
23 |
-
df = df.iloc[:, [6, 7, 9]]
|
24 |
-
df.columns = ['Hall', 'StartTime', 'EndTime']
|
25 |
-
|
26 |
-
# 清理数据
|
27 |
-
df = df.dropna(subset=['Hall', 'StartTime', 'EndTime'])
|
28 |
-
|
29 |
-
#
|
30 |
-
df['Hall'] = df['Hall'].str.extract(r'(\d+)号').astype(str) + r'$^{\#}$'
|
31 |
-
|
32 |
-
# 保存原始时间字符串用于诊断
|
33 |
-
df['original_end'] = df['EndTime']
|
34 |
-
|
35 |
-
# 转换时间为 datetime 对象
|
36 |
-
base_date = datetime.today().date()
|
37 |
-
df['StartTime'] = pd.to_datetime(df['StartTime'])
|
38 |
-
df['EndTime'] = pd.to_datetime(df['EndTime'])
|
39 |
-
|
40 |
-
# 设置基准时间
|
41 |
-
business_start = datetime.strptime(f"{base_date} {BUSINESS_START}", "%Y-%m-%d %H:%M")
|
42 |
-
business_end = datetime.strptime(f"{base_date} {BUSINESS_END}", "%Y-%m-%d %H:%M")
|
43 |
-
|
44 |
-
# 处理跨天情况
|
45 |
-
if business_end < business_start:
|
46 |
-
business_end += timedelta(days=1)
|
47 |
-
|
48 |
-
# 标准化所有时间到同一天
|
49 |
-
for idx, row in df.iterrows():
|
50 |
-
end_time = row['EndTime']
|
51 |
-
if end_time.hour < 9:
|
52 |
-
df.at[idx, 'EndTime'] = end_time + timedelta(days=1)
|
53 |
-
|
54 |
-
if row['StartTime'].hour >= 21 and end_time.hour < 9:
|
55 |
-
df.at[idx, 'EndTime'] = end_time + timedelta(days=1)
|
56 |
-
|
57 |
-
# 筛选营业时间内的场次
|
58 |
-
df['time_for_comparison'] = df['EndTime'].apply(
|
59 |
-
lambda x: datetime.combine(base_date, x.time())
|
60 |
-
)
|
61 |
-
|
62 |
-
df.loc[df['time_for_comparison'].dt.hour < 9, 'time_for_comparison'] += timedelta(days=1)
|
63 |
-
|
64 |
-
valid_times = (
|
65 |
-
((df['time_for_comparison'] >= datetime.combine(base_date, business_start.time())) &
|
66 |
-
(df['time_for_comparison'] <= datetime.combine(base_date + timedelta(days=1), business_end.time())))
|
67 |
-
)
|
68 |
-
|
69 |
-
df = df[valid_times]
|
70 |
-
|
71 |
-
# 按散场时间排序
|
72 |
-
df = df.sort_values('EndTime')
|
73 |
-
|
74 |
-
# 分割数据
|
75 |
-
split_time = datetime.strptime(f"{base_date} {SPLIT_TIME}", "%Y-%m-%d %H:%M")
|
76 |
-
split_time_for_comparison = df['time_for_comparison'].apply(
|
77 |
-
lambda x: datetime.combine(base_date, split_time.time())
|
78 |
-
)
|
79 |
-
|
80 |
-
part1 = df[df['time_for_comparison'] <= split_time_for_comparison].copy()
|
81 |
-
part2 = df[df['time_for_comparison'] > split_time_for_comparison].copy()
|
82 |
-
|
83 |
-
# 格式化时间显示
|
84 |
-
for part in [part1, part2]:
|
85 |
-
part['EndTime'] = part['EndTime'].dt.strftime('%-I:%M')
|
86 |
-
|
87 |
-
#
|
88 |
-
date_df = pd.read_excel(
|
89 |
-
file,
|
90 |
-
skiprows=5,
|
91 |
-
nrows=1,
|
92 |
-
usecols=[2],
|
93 |
-
header=None
|
94 |
-
)
|
95 |
-
date_cell = date_df.iloc[0, 0]
|
96 |
-
|
97 |
-
try:
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
return None, None, None
|
111 |
|
112 |
def create_print_layout(data, title, date_str):
|
113 |
-
"""创建打印布局"""
|
114 |
-
if data.empty:
|
115 |
-
return None
|
116 |
-
|
117 |
-
# 设置 A5
|
118 |
-
fig = plt.figure(figsize=(5.83, 8.27), dpi=300)
|
119 |
-
plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05)
|
120 |
-
|
121 |
-
# 设置字体
|
122 |
-
plt.rcParams['font.family'] = 'sans-serif'
|
123 |
-
plt.rcParams['font.sans-serif'] = ['Arial Unicode MS']
|
124 |
-
|
125 |
-
# 计算行数和总数
|
126 |
-
total_items = len(data)
|
127 |
-
num_cols = 3
|
128 |
-
num_rows = math.ceil(total_items / num_cols)
|
129 |
-
|
130 |
-
# 创建网格
|
131 |
-
gs = gridspec.GridSpec(num_rows + 1, num_cols, hspace=0.1, wspace=0.1, height_ratios=[1] * num_rows + [0.2])
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
ax.
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
ax_date.
|
188 |
-
ax_date.
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
# Streamlit 界面
|
200 |
st.set_page_config(page_title="散厅时间快捷打印", layout="wide")
|
@@ -203,24 +213,24 @@ st.title("散厅时间快捷打印")
|
|
203 |
uploaded_file = st.file_uploader("上传【放映场次核对表.xls】文件", type=["xls", "xlsx"])
|
204 |
|
205 |
if uploaded_file:
|
206 |
-
part1, part2, date_str = process_schedule(uploaded_file)
|
207 |
-
|
208 |
-
if part1 is not None and part2 is not None:
|
209 |
-
part1_image = create_print_layout(part1, "A", date_str)
|
210 |
-
part2_image = create_print_layout(part2, "C", date_str)
|
211 |
-
|
212 |
-
col1, col2 = st.columns(2)
|
213 |
-
|
214 |
-
with col1:
|
215 |
-
st.subheader("白班散场预览(时间 ≤ 17:30)")
|
216 |
-
if part1_image:
|
217 |
-
st.image(part1_image)
|
218 |
-
else:
|
219 |
-
st.info("白班部分没有数据")
|
220 |
-
|
221 |
-
with col2:
|
222 |
-
st.subheader("夜班散场预览(时间 > 17:30)")
|
223 |
-
if part2_image:
|
224 |
-
st.image(part2_image)
|
225 |
-
else:
|
226 |
-
st.info("夜班部分没有数据")
|
|
|
6 |
import base64
|
7 |
import matplotlib.gridspec as gridspec
|
8 |
import math
|
9 |
+
import re # 新增正则模块
|
10 |
|
11 |
SPLIT_TIME = "17:30"
|
12 |
BUSINESS_START = "09:30"
|
|
|
15 |
DATE_COLOR = '#A9A9A9'
|
16 |
|
17 |
def process_schedule(file):
|
18 |
+
"""处理上传的 Excel 文件,生成排序和分组后的打印内容"""
|
19 |
+
try:
|
20 |
+
# 读取 Excel,跳过前 8 行
|
21 |
+
df = pd.read_excel(file, skiprows=8)
|
22 |
+
|
23 |
+
# 提取所需列 (G9, H9, J9)
|
24 |
+
df = df.iloc[:, [6, 7, 9]] # G, H, J 列
|
25 |
+
df.columns = ['Hall', 'StartTime', 'EndTime']
|
26 |
+
|
27 |
+
# 清理数据
|
28 |
+
df = df.dropna(subset=['Hall', 'StartTime', 'EndTime'])
|
29 |
+
|
30 |
+
# 转换影厅格式为带LaTeX上标井号
|
31 |
+
df['Hall'] = df['Hall'].str.extract(r'(\d+)号').astype(str) + r'$^{\#}$'
|
32 |
+
|
33 |
+
# 保存原始时间字符串用于诊断
|
34 |
+
df['original_end'] = df['EndTime']
|
35 |
+
|
36 |
+
# 转换时间为 datetime 对象
|
37 |
+
base_date = datetime.today().date()
|
38 |
+
df['StartTime'] = pd.to_datetime(df['StartTime'])
|
39 |
+
df['EndTime'] = pd.to_datetime(df['EndTime'])
|
40 |
+
|
41 |
+
# 设置基准时间
|
42 |
+
business_start = datetime.strptime(f"{base_date} {BUSINESS_START}", "%Y-%m-%d %H:%M")
|
43 |
+
business_end = datetime.strptime(f"{base_date} {BUSINESS_END}", "%Y-%m-%d %H:%M")
|
44 |
+
|
45 |
+
# 处理跨天情况
|
46 |
+
if business_end < business_start:
|
47 |
+
business_end += timedelta(days=1)
|
48 |
+
|
49 |
+
# 标准化所有时间到同一天
|
50 |
+
for idx, row in df.iterrows():
|
51 |
+
end_time = row['EndTime']
|
52 |
+
if end_time.hour < 9:
|
53 |
+
df.at[idx, 'EndTime'] = end_time + timedelta(days=1)
|
54 |
+
|
55 |
+
if row['StartTime'].hour >= 21 and end_time.hour < 9:
|
56 |
+
df.at[idx, 'EndTime'] = end_time + timedelta(days=1)
|
57 |
+
|
58 |
+
# 筛选营业时间内的场次
|
59 |
+
df['time_for_comparison'] = df['EndTime'].apply(
|
60 |
+
lambda x: datetime.combine(base_date, x.time())
|
61 |
+
)
|
62 |
+
|
63 |
+
df.loc[df['time_for_comparison'].dt.hour < 9, 'time_for_comparison'] += timedelta(days=1)
|
64 |
+
|
65 |
+
valid_times = (
|
66 |
+
((df['time_for_comparison'] >= datetime.combine(base_date, business_start.time())) &
|
67 |
+
(df['time_for_comparison'] <= datetime.combine(base_date + timedelta(days=1), business_end.time())))
|
68 |
+
)
|
69 |
+
|
70 |
+
df = df[valid_times]
|
71 |
+
|
72 |
+
# 按散场时间排序
|
73 |
+
df = df.sort_values('EndTime')
|
74 |
+
|
75 |
+
# 分割数据
|
76 |
+
split_time = datetime.strptime(f"{base_date} {SPLIT_TIME}", "%Y-%m-%d %H:%M")
|
77 |
+
split_time_for_comparison = df['time_for_comparison'].apply(
|
78 |
+
lambda x: datetime.combine(base_date, split_time.time())
|
79 |
+
)
|
80 |
+
|
81 |
+
part1 = df[df['time_for_comparison'] <= split_time_for_comparison].copy()
|
82 |
+
part2 = df[df['time_for_comparison'] > split_time_for_comparison].copy()
|
83 |
+
|
84 |
+
# 格式化时间显示
|
85 |
+
for part in [part1, part2]:
|
86 |
+
part['EndTime'] = part['EndTime'].dt.strftime('%-I:%M')
|
87 |
+
|
88 |
+
# 读取日期信息
|
89 |
+
date_df = pd.read_excel(
|
90 |
+
file,
|
91 |
+
skiprows=5,
|
92 |
+
nrows=1,
|
93 |
+
usecols=[2],
|
94 |
+
header=None
|
95 |
+
)
|
96 |
+
date_cell = date_df.iloc[0, 0]
|
97 |
+
|
98 |
+
try:
|
99 |
+
if isinstance(date_cell, str):
|
100 |
+
date_str = datetime.strptime(date_cell, '%Y-%m-%d').strftime('%Y-%m-%d')
|
101 |
+
else:
|
102 |
+
date_str = pd.to_datetime(date_cell).strftime('%Y-%m-%d')
|
103 |
+
except:
|
104 |
+
date_str = datetime.today().strftime('%Y-%m-%d')
|
105 |
+
|
106 |
+
return part1[['Hall', 'EndTime']], part2[['Hall', 'EndTime']], date_str
|
107 |
+
|
108 |
+
except Exception as e:
|
109 |
+
st.error(f"处理文件时出错: {str(e)}")
|
110 |
+
return None, None, None
|
|
|
111 |
|
112 |
def create_print_layout(data, title, date_str):
|
113 |
+
"""创建打印布局"""
|
114 |
+
if data.empty:
|
115 |
+
return None
|
116 |
+
|
117 |
+
# 设置 A5 纸张横向尺寸
|
118 |
+
fig = plt.figure(figsize=(5.83, 8.27), dpi=300)
|
119 |
+
plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05)
|
120 |
+
|
121 |
+
# 设置字体
|
122 |
+
plt.rcParams['font.family'] = 'sans-serif'
|
123 |
+
plt.rcParams['font.sans-serif'] = ['Arial Unicode MS']
|
124 |
+
|
125 |
+
# 计算行数和总数
|
126 |
+
total_items = len(data)
|
127 |
+
num_cols = 3
|
128 |
+
num_rows = math.ceil(total_items / num_cols)
|
129 |
+
|
130 |
+
# 创建网格
|
131 |
+
gs = gridspec.GridSpec(num_rows + 1, num_cols, hspace=0.1, wspace=0.1, height_ratios=[1] * num_rows + [0.2])
|
132 |
+
|
133 |
+
# 计算最大字符数
|
134 |
+
max_char_count = 0
|
135 |
+
for hall, end_time in data.values:
|
136 |
+
# 清理LaTeX标记并计算实际显示字符数
|
137 |
+
clean_hall = re.sub(r'\$.*?\$', '#', hall)
|
138 |
+
clean_text = f"{clean_hall}{end_time}"
|
139 |
+
current_count = len(clean_text)
|
140 |
+
max_char_count = max(max_char_count, current_count)
|
141 |
+
|
142 |
+
# 动态计算基础字号(确保最长文本占90%宽度)
|
143 |
+
cell_width_inches = 5.83 / 3 # 每列宽度(A5横向)
|
144 |
+
available_width = cell_width_inches * 0.9 * 72 # 转换为点数(1英寸=72点)
|
145 |
+
avg_char_width = 0.6 # 经验值(Arial字体字符宽度系数)
|
146 |
+
base_fontsize = available_width / (max_char_count * avg_char_width)
|
147 |
+
base_fontsize = min(30, base_fontsize) # 最大不超过30pt
|
148 |
+
|
149 |
+
# 填充数据
|
150 |
+
data_values = data.values.tolist()
|
151 |
+
while len(data_values) % 3 != 0:
|
152 |
+
data_values.append(['', ''])
|
153 |
+
|
154 |
+
sorted_data = [['', '']] * len(data_values)
|
155 |
+
|
156 |
+
for i, item in enumerate(data_values):
|
157 |
+
if item[0] and item[1]:
|
158 |
+
row = i % math.ceil(len(data_values)/3)
|
159 |
+
col = i // math.ceil(len(data_values)/3)
|
160 |
+
new_index = row * 3 + col
|
161 |
+
if new_index < len(sorted_data):
|
162 |
+
sorted_data[new_index] = item
|
163 |
+
|
164 |
+
for idx, (hall, end_time) in enumerate(sorted_data):
|
165 |
+
if hall and end_time:
|
166 |
+
row = idx // 3
|
167 |
+
col = idx % 3
|
168 |
+
|
169 |
+
ax = plt.subplot(gs[row, col])
|
170 |
+
|
171 |
+
for spine in ax.spines.values():
|
172 |
+
spine.set_color(BORDER_COLOR)
|
173 |
+
spine.set_linewidth(0.5)
|
174 |
+
|
175 |
+
ax.text(0.5, 0.5, f"{hall}{end_time}",
|
176 |
+
fontsize=base_fontsize,
|
177 |
+
fontweight='bold',
|
178 |
+
ha='center',
|
179 |
+
va='center')
|
180 |
+
|
181 |
+
ax.set_xlim(-0.02, 1.02)
|
182 |
+
ax.set_ylim(-0.02, 1.02)
|
183 |
+
ax.set_xticks([])
|
184 |
+
ax.set_yticks([])
|
185 |
+
|
186 |
+
# 添加日期信息
|
187 |
+
ax_date = plt.subplot(gs[0, 0])
|
188 |
+
ax_date.text(0.05, 0.95, f"{date_str} {title}",
|
189 |
+
fontsize=base_fontsize * 0.4,
|
190 |
+
color=DATE_COLOR,
|
191 |
+
fontweight='bold',
|
192 |
+
ha='left',
|
193 |
+
va='top')
|
194 |
+
|
195 |
+
for spine in ax_date.spines.values():
|
196 |
+
spine.set_visible(False)
|
197 |
+
ax_date.set_xticks([])
|
198 |
+
ax_date.set_yticks([])
|
199 |
+
|
200 |
+
# 转换为图片
|
201 |
+
buffer = io.BytesIO()
|
202 |
+
plt.savefig(buffer, format='png', bbox_inches='tight', pad_inches=0.05)
|
203 |
+
buffer.seek(0)
|
204 |
+
image_base64 = base64.b64encode(buffer.getvalue()).decode()
|
205 |
+
plt.close()
|
206 |
+
|
207 |
+
return f'data:image/png;base64,{image_base64}'
|
208 |
|
209 |
# Streamlit 界面
|
210 |
st.set_page_config(page_title="散厅时间快捷打印", layout="wide")
|
|
|
213 |
uploaded_file = st.file_uploader("上传【放映场次核对表.xls】文件", type=["xls", "xlsx"])
|
214 |
|
215 |
if uploaded_file:
|
216 |
+
part1, part2, date_str = process_schedule(uploaded_file)
|
217 |
+
|
218 |
+
if part1 is not None and part2 is not None:
|
219 |
+
part1_image = create_print_layout(part1, "A", date_str)
|
220 |
+
part2_image = create_print_layout(part2, "C", date_str)
|
221 |
+
|
222 |
+
col1, col2 = st.columns(2)
|
223 |
+
|
224 |
+
with col1:
|
225 |
+
st.subheader("白班散场预览(时间 ≤ 17:30)")
|
226 |
+
if part1_image:
|
227 |
+
st.image(part1_image)
|
228 |
+
else:
|
229 |
+
st.info("白班部分没有数据")
|
230 |
+
|
231 |
+
with col2:
|
232 |
+
st.subheader("夜班散场预览(时间 > 17:30)")
|
233 |
+
if part2_image:
|
234 |
+
st.image(part2_image)
|
235 |
+
else:
|
236 |
+
st.info("夜班部分没有数据")
|