File size: 9,629 Bytes
d244e18
 
 
15ed0e7
de30673
412e4a3
d244e18
 
 
 
15ed0e7
d244e18
 
 
a9e6c3b
d244e18
f2f7dda
 
51225e7
d244e18
 
9476a94
4d8d888
 
 
 
 
 
 
 
 
 
 
 
15ed0e7
a4e4b71
15ed0e7
3371395
d244e18
 
 
 
 
 
 
 
 
 
 
a9e6c3b
412e4a3
15ed0e7
412e4a3
15ed0e7
 
f172bb5
15ed0e7
 
 
 
412e4a3
 
15ed0e7
 
 
 
412e4a3
 
15ed0e7
 
 
 
 
 
 
 
 
 
de30673
a28a9dc
c90c2ec
f172bb5
d38433c
3b2fd03
b604a12
15ed0e7
bca3677
44e6288
bca3677
a620e89
 
b604a12
a28a9dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d244e18
 
 
 
 
006ee88
15ed0e7
 
 
 
 
 
 
 
 
 
d244e18
a601e7b
d244e18
15ed0e7
d244e18
412e4a3
 
 
 
3f05b9b
 
 
 
412e4a3
3f05b9b
 
d244e18
 
 
 
3f05b9b
d244e18
 
3f05b9b
15ed0e7
d244e18
 
3f05b9b
d244e18
3f05b9b
d244e18
 
 
412e4a3
d244e18
 
 
 
 
 
 
 
 
 
40a5413
 
 
 
 
 
 
 
 
 
d244e18
3f05b9b
0f11a05
40a5413
229a73d
0f11a05
40a5413
229a73d
0f11a05
40a5413
229a73d
0f11a05
40a5413
229a73d
72bb6cb
95ff438
229a73d
72bb6cb
95ff438
229a73d
72bb6cb
95ff438
229a73d
72bb6cb
95ff438
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import streamlit as st
import os
import requests
import pdfplumber
import chromadb
import re
from langchain.document_loaders import PDFPlumberLoader
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_experimental.text_splitter import SemanticChunker
from langchain_chroma import Chroma
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_groq import ChatGroq
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth

# ----------------- Streamlit UI Setup -----------------
st.set_page_config(page_title="Blah-1", layout="centered")


# ----------------- API Keys -----------------
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")

# Load LLM models
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
rag_llm = ChatGroq(model="mixtral-8x7b-32768")

llm_judge.verbose = True
rag_llm.verbose = True

# Clear ChromaDB cache to fix tenant issue
chromadb.api.client.SharedSystemClient.clear_system_cache()

st.title("Blah")

# ----------------- ChromaDB Persistent Directory -----------------
CHROMA_DB_DIR = "/mnt/data/chroma_db" 
os.makedirs(CHROMA_DB_DIR, exist_ok=True)

# ----------------- Initialize Session State -----------------
if "pdf_loaded" not in st.session_state:
    st.session_state.pdf_loaded = False
if "chunked" not in st.session_state:
    st.session_state.chunked = False
if "vector_created" not in st.session_state:
    st.session_state.vector_created = False
if "processed_chunks" not in st.session_state:
    st.session_state.processed_chunks = None
if "vector_store" not in st.session_state:
    st.session_state.vector_store = None

# ----------------- Improved Metadata Extraction -----------------
def extract_metadata(pdf_path):
    """Extracts title, author, emails, and affiliations from PDF."""
    with pdfplumber.open(pdf_path) as pdf:
        metadata = pdf.metadata or {}

        # Extract title
        title = metadata.get("Title", "").strip()
        if not title and pdf.pages:
            text = pdf.pages[0].extract_text()
            title_match = re.search(r"(?i)title[:\-]?\s*(.*)", text or "")
            title = title_match.group(1) if title_match else text.split("\n")[0] if text else "Untitled Document"

        # Extract author
        author = metadata.get("Author", "").strip()
        if not author and pdf.pages:
            author_match = re.search(r"(?i)by\s+([A-Za-z\s,]+)", pdf.pages[0].extract_text() or "")
            author = author_match.group(1).strip() if author_match else "Unknown Author"

        # Extract emails
        emails = re.findall(r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}", pdf.pages[0].extract_text() or "")
        email_str = ", ".join(emails) if emails else "No emails found"

        # Extract affiliations
        affiliations = re.findall(r"(?:Department|Faculty|Institute|University|College|School)\s+[\w\s]+", pdf.pages[0].extract_text() or "")
        affiliation_str = ", ".join(affiliations) if affiliations else "No affiliations found"

    return title, author, email_str, affiliation_str

# ----------------- Step 1: Choose PDF Source -----------------
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)

if pdf_source == "Upload a PDF file":
    uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"])
    if uploaded_file:
        st.session_state.pdf_path = "/mnt/data/temp.pdf"
        with open(st.session_state.pdf_path, "wb") as f:
            f.write(uploaded_file.getbuffer())
        st.session_state.pdf_loaded = False
        st.session_state.chunked = False
        st.session_state.vector_created = False

elif pdf_source == "Enter a PDF URL":
    pdf_url = st.text_input("Enter PDF URL:")
    if pdf_url and not st.session_state.pdf_loaded:
        with st.spinner("πŸ”„ Downloading PDF..."):
            try:
                response = requests.get(pdf_url)
                if response.status_code == 200:
                    st.session_state.pdf_path = "/mnt/data/temp.pdf"
                    with open(st.session_state.pdf_path, "wb") as f:
                        f.write(response.content)
                    st.session_state.pdf_loaded = False
                    st.session_state.chunked = False
                    st.session_state.vector_created = False
                    st.success("βœ… PDF Downloaded Successfully!")
                else:
                    st.error("❌ Failed to download PDF. Check the URL.")
            except Exception as e:
                st.error(f"Error downloading PDF: {e}")


# ----------------- Process PDF -----------------
if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
    with st.spinner("πŸ”„ Processing document... Please wait."):
        loader = PDFPlumberLoader(st.session_state.pdf_path)
        docs = loader.load()
        st.json(docs[0].metadata)

        # Extract metadata
        title, author, email_str, affiliation_str = extract_metadata(st.session_state.pdf_path)

        # Display extracted metadata
        st.subheader("πŸ“„ Extracted Document Metadata")
        st.write(f"**Title:** {title}")
        st.write(f"**Author:** {author}")
        st.write(f"**Emails:** {email_str}")
        st.write(f"**Affiliations:** {affiliation_str}")

        # Embedding Model
        model_name = "nomic-ai/modernbert-embed-base"
        embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False})

        # Convert metadata into a retrievable chunk
        metadata_text = f"Title: {title}\nAuthor: {author}\nEmails: {email_str}\nAffiliations: {affiliation_str}"
        metadata_doc = {"page_content": metadata_text, "metadata": {"source": "metadata"}}

        # Prevent unnecessary re-chunking
        if not st.session_state.chunked:
            text_splitter = SemanticChunker(embedding_model)
            document_chunks = text_splitter.split_documents(docs)
            document_chunks.insert(0, metadata_doc)  # Insert metadata as a retrievable document
            st.session_state.processed_chunks = document_chunks
            st.session_state.chunked = True

        st.session_state.pdf_loaded = True
        st.success("βœ… Document processed and chunked successfully!")

# ----------------- Setup Vector Store -----------------
if not st.session_state.vector_created and st.session_state.processed_chunks:
    with st.spinner("πŸ”„ Initializing Vector Store..."):
        st.session_state.vector_store = Chroma(
            persist_directory=CHROMA_DB_DIR,  # <-- Ensures persistence
            collection_name="deepseek_collection",
            collection_metadata={"hnsw:space": "cosine"},
            embedding_function=embedding_model
        )
        st.session_state.vector_store.add_documents(st.session_state.processed_chunks)
        st.session_state.vector_created = True
        st.success("βœ… Vector store initialized successfully!")


# ----------------- Query Input -----------------
query = st.text_input("πŸ” Ask a question about the document:")

if query:
    with st.spinner("πŸ”„ Retrieving relevant context..."):
        retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
        retrieved_docs = retriever.invoke(query)
        context = [d.page_content for d in retrieved_docs]
        st.success("βœ… Context retrieved successfully!")

    # ----------------- Run Individual Chains Explicitly -----------------
    context_relevancy_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["retriever_query", "context"], template=relevancy_prompt), output_key="relevancy_response")
    relevant_context_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["relevancy_response"], template=relevant_context_picker_prompt), output_key="context_number")
    relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["context_number", "context"], template=response_synth), output_key="relevant_contexts")
    response_chain = LLMChain(llm=rag_llm, prompt=PromptTemplate(input_variables=["query", "context"], template=rag_prompt), output_key="final_response")

    response_crisis = context_relevancy_chain.invoke({"context": context, "retriever_query": query})
    relevant_response = relevant_context_chain.invoke({"relevancy_response": response_crisis["relevancy_response"]})
    contexts = relevant_contexts_chain.invoke({"context_number": relevant_response["context_number"], "context": context})
    final_response = response_chain.invoke({"query": query, "context": contexts["relevant_contexts"]})

    # ----------------- Display All Outputs -----------------
    st.markdown("### Context Relevancy Evaluation")
    st.json(response_crisis["relevancy_response"])

    st.markdown("### Picked Relevant Contexts")
    st.json(relevant_response["context_number"])

    st.markdown("### Extracted Relevant Contexts")
    st.json(contexts["relevant_contexts"])

    st.markdown("### RAG Final Response")
    st.write(final_response["final_response"])

    st.subheader("context_relevancy_evaluation_chain Statement")
    st.json(final_response["relevancy_response"])

    st.subheader("pick_relevant_context_chain Statement")
    st.json(final_response["context_number"])

    st.subheader("relevant_contexts_chain Statement")
    st.json(final_response["relevant_contexts"])

    st.subheader("RAG Response Statement")
    st.json(final_response["final_response"])