Spaces:
Runtime error
Runtime error
File size: 2,616 Bytes
5b512a0 7ce3041 5b512a0 073d257 c1d6f67 6a49dc6 2be6eb1 6a49dc6 522dbe7 d69d53c 073d257 6a49dc6 073d257 6d87ed3 073d257 5b512a0 073d257 5b512a0 95c1ed8 5b512a0 02f0f1d 5b512a0 02f0f1d 5b512a0 02f0f1d 5b512a0 073d257 5b512a0 073d257 5b512a0 ce82d39 5b512a0 95c1ed8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
from flask import Flask, jsonify, request
from pathlib import Path
import sys
import torch
import os
from torch import autocast
from diffusers import StableDiffusionPipeline, DDIMScheduler, DiffusionPipeline
import streamlit as st
import io
from PIL import Image
from huggingface_hub import login
# HF_TOKEN = os.environ.get("HF_TOKEN")
login(token='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')
# pipe = StableDiffusionPipeline.from_pretrained("Divyanshu04/Finetuned-model", safety_checker=None, torch_dtype=torch.float16).to("cpu")
# pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
# pipe.enable_xformers_memory_efficient_attention() #if gpu is available
# g_cuda = None
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))
app = Flask(__name__)
import requests
API_URL = "https://api-inference.huggingface.co/models/Divyanshu04/Finetuned-model"
headers = {"Authorization": "Bearer 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"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.content
# @app.route("/", methods=["POST"])
def generate():
with st.form(key="Form :", clear_on_submit = True):
prompt = st.text_area(label = "prompt", key="pmpt")
negative_prompt = st.text_area(label = "Negative prompt", key="ng_pmpt")
num_samples = st.number_input("No. of samples", step=1)
Submit = st.form_submit_button(label='Submit')
if Submit:
image_bytes = query({"inputs": prompt,})
# You can access the image with PIL.Image for example
image = Image.open(io.BytesIO(image_bytes))
# guidance_scale = 7.5
# num_inference_steps = 24
# height = 512
# width = 512
# g_cuda = torch.Generator(device='cpu')
# seed = 52362
# g_cuda.manual_seed(seed)
# with autocast("cpu"), torch.inference_mode():
# images = pipe(
# prompt,
# height=height,
# width=width,
# negative_prompt=negative_prompt,
# num_images_per_prompt=num_samples,
# num_inference_steps=num_inference_steps,
# guidance_scale=guidance_scale,
# generator=g_cuda
# ).images
st.image(image)
else:
st.write('<Enter parameters to generate image>')
# driver function
if __name__ == '__main__':
generate() |