Spaces:
Runtime error
Runtime error
Commit
·
5b512a0
1
Parent(s):
ef31f0a
Test
Browse files- Dockerfile +11 -0
- DreamBooth_Stable_Diffusion.ipynb +0 -0
- Text2image-api.py +82 -0
- concepts_list.json +8 -0
- main.py +7 -0
- requirements.txt +5 -0
- train_dreambooth.py +869 -0
Dockerfile
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
|
3 |
+
WORKDIR /code
|
4 |
+
|
5 |
+
COPY ./requirements.txt /code/requirements.txt
|
6 |
+
|
7 |
+
RUN pip install --upgrade -r /code/requirements.txt
|
8 |
+
|
9 |
+
COPY . .
|
10 |
+
|
11 |
+
CMD ["gunicorn", "-b", "0.0.0.0:7860", "Text2image-api:app"]
|
DreamBooth_Stable_Diffusion.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Text2image-api.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, jsonify, request
|
2 |
+
from pathlib import Path
|
3 |
+
import sys
|
4 |
+
import torch
|
5 |
+
import os
|
6 |
+
from torch import autocast
|
7 |
+
from diffusers import StableDiffusionPipeline, DDIMScheduler
|
8 |
+
import streamlit as st
|
9 |
+
|
10 |
+
# model_path = WEIGHTS_DIR # If you want to use previously trained model saved in gdrive, replace this with the full path of model in gdrive
|
11 |
+
|
12 |
+
# pipe = StableDiffusionPipeline.from_pretrained(model_path, safety_checker=None, torch_dtype=torch.float32).to("cuda")
|
13 |
+
# pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
14 |
+
# pipe.enable_xformers_memory_efficient_attention()
|
15 |
+
# g_cuda = None
|
16 |
+
|
17 |
+
FILE = Path(__file__).resolve()
|
18 |
+
ROOT = FILE.parents[0] # YOLOv5 root directory
|
19 |
+
if str(ROOT) not in sys.path:
|
20 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
21 |
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))
|
22 |
+
|
23 |
+
app = Flask(__name__)
|
24 |
+
|
25 |
+
# @app.route('/', methods = ['GET', 'POST'])
|
26 |
+
# def home():
|
27 |
+
# if(request.method == 'GET'):
|
28 |
+
|
29 |
+
# data = "Text2Image"
|
30 |
+
# return jsonify({'service': data})
|
31 |
+
|
32 |
+
|
33 |
+
@app.route("/", methods=["POST"])
|
34 |
+
def generate():
|
35 |
+
|
36 |
+
# prompt = request.form['prompt']
|
37 |
+
# negative_prompt = request.form['Negative prompt']
|
38 |
+
# num_samples = request.form['No. of samples']
|
39 |
+
|
40 |
+
prompt = st.text_area(placeholder = "prompt", key="pmpt")
|
41 |
+
negative_prompt = st.text_area(placeholder = "Negative prompt", key="ng_pmpt")
|
42 |
+
num_samples = st.number_input("No. of samples")
|
43 |
+
|
44 |
+
res = st.button("Reset", type="primary")
|
45 |
+
|
46 |
+
if res:
|
47 |
+
|
48 |
+
guidance_scale = 7.5
|
49 |
+
num_inference_steps = 24
|
50 |
+
height = 512
|
51 |
+
width = 512
|
52 |
+
|
53 |
+
g_cuda = torch.Generator(device='cuda')
|
54 |
+
seed = 52362
|
55 |
+
g_cuda.manual_seed(seed)
|
56 |
+
|
57 |
+
# commandline_args = os.environ.get('COMMANDLINE_ARGS', "--skip-torch-cuda-test --no-half")
|
58 |
+
|
59 |
+
with autocast("cuda"), torch.inference_mode():
|
60 |
+
images = pipe(
|
61 |
+
prompt,
|
62 |
+
height=height,
|
63 |
+
width=width,
|
64 |
+
negative_prompt=negative_prompt,
|
65 |
+
num_images_per_prompt=num_samples,
|
66 |
+
num_inference_steps=num_inference_steps,
|
67 |
+
guidance_scale=guidance_scale,
|
68 |
+
generator=g_cuda
|
69 |
+
).images
|
70 |
+
|
71 |
+
return {"message": "successful"}
|
72 |
+
|
73 |
+
else:
|
74 |
+
return {"message": "Running.."}
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
# driver function
|
80 |
+
# if __name__ == '__main__':
|
81 |
+
|
82 |
+
# app.run(debug = True)
|
concepts_list.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"instance_prompt": "photo of zwx dog",
|
4 |
+
"class_prompt": "photo of a dog",
|
5 |
+
"instance_data_dir": "/content/data/zwx",
|
6 |
+
"class_data_dir": "/content/data/dog"
|
7 |
+
}
|
8 |
+
]
|
main.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask
|
2 |
+
|
3 |
+
app = Flask(__name__)
|
4 |
+
|
5 |
+
@app.route('/')
|
6 |
+
def hello():
|
7 |
+
return {'hei': "you success"}
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
flask
|
2 |
+
gunicorn
|
3 |
+
xformers==0.0.20
|
4 |
+
diffusers
|
5 |
+
gradio
|
train_dreambooth.py
ADDED
@@ -0,0 +1,869 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import hashlib
|
3 |
+
import itertools
|
4 |
+
import random
|
5 |
+
import json
|
6 |
+
import logging
|
7 |
+
import math
|
8 |
+
import os
|
9 |
+
from contextlib import nullcontext
|
10 |
+
from pathlib import Path
|
11 |
+
from typing import Optional
|
12 |
+
|
13 |
+
import torch
|
14 |
+
import torch.nn.functional as F
|
15 |
+
import torch.utils.checkpoint
|
16 |
+
from torch.utils.data import Dataset
|
17 |
+
|
18 |
+
from accelerate import Accelerator
|
19 |
+
from accelerate.logging import get_logger
|
20 |
+
from accelerate.utils import set_seed
|
21 |
+
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel
|
22 |
+
from diffusers.optimization import get_scheduler
|
23 |
+
from diffusers.utils.import_utils import is_xformers_available
|
24 |
+
from huggingface_hub import HfFolder, Repository, whoami
|
25 |
+
from PIL import Image
|
26 |
+
from torchvision import transforms
|
27 |
+
from tqdm.auto import tqdm
|
28 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
29 |
+
|
30 |
+
|
31 |
+
torch.backends.cudnn.benchmark = True
|
32 |
+
|
33 |
+
|
34 |
+
logger = get_logger(__name__)
|
35 |
+
|
36 |
+
|
37 |
+
def parse_args(input_args=None):
|
38 |
+
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
39 |
+
parser.add_argument(
|
40 |
+
"--pretrained_model_name_or_path",
|
41 |
+
type=str,
|
42 |
+
default=None,
|
43 |
+
required=True,
|
44 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
45 |
+
)
|
46 |
+
parser.add_argument(
|
47 |
+
"--pretrained_vae_name_or_path",
|
48 |
+
type=str,
|
49 |
+
default=None,
|
50 |
+
help="Path to pretrained vae or vae identifier from huggingface.co/models.",
|
51 |
+
)
|
52 |
+
parser.add_argument(
|
53 |
+
"--revision",
|
54 |
+
type=str,
|
55 |
+
default=None,
|
56 |
+
required=False,
|
57 |
+
help="Revision of pretrained model identifier from huggingface.co/models.",
|
58 |
+
)
|
59 |
+
parser.add_argument(
|
60 |
+
"--tokenizer_name",
|
61 |
+
type=str,
|
62 |
+
default=None,
|
63 |
+
help="Pretrained tokenizer name or path if not the same as model_name",
|
64 |
+
)
|
65 |
+
parser.add_argument(
|
66 |
+
"--instance_data_dir",
|
67 |
+
type=str,
|
68 |
+
default=None,
|
69 |
+
help="A folder containing the training data of instance images.",
|
70 |
+
)
|
71 |
+
parser.add_argument(
|
72 |
+
"--class_data_dir",
|
73 |
+
type=str,
|
74 |
+
default=None,
|
75 |
+
help="A folder containing the training data of class images.",
|
76 |
+
)
|
77 |
+
parser.add_argument(
|
78 |
+
"--instance_prompt",
|
79 |
+
type=str,
|
80 |
+
default=None,
|
81 |
+
help="The prompt with identifier specifying the instance",
|
82 |
+
)
|
83 |
+
parser.add_argument(
|
84 |
+
"--class_prompt",
|
85 |
+
type=str,
|
86 |
+
default=None,
|
87 |
+
help="The prompt to specify images in the same class as provided instance images.",
|
88 |
+
)
|
89 |
+
parser.add_argument(
|
90 |
+
"--save_sample_prompt",
|
91 |
+
type=str,
|
92 |
+
default=None,
|
93 |
+
help="The prompt used to generate sample outputs to save.",
|
94 |
+
)
|
95 |
+
parser.add_argument(
|
96 |
+
"--save_sample_negative_prompt",
|
97 |
+
type=str,
|
98 |
+
default=None,
|
99 |
+
help="The negative prompt used to generate sample outputs to save.",
|
100 |
+
)
|
101 |
+
parser.add_argument(
|
102 |
+
"--n_save_sample",
|
103 |
+
type=int,
|
104 |
+
default=4,
|
105 |
+
help="The number of samples to save.",
|
106 |
+
)
|
107 |
+
parser.add_argument(
|
108 |
+
"--save_guidance_scale",
|
109 |
+
type=float,
|
110 |
+
default=7.5,
|
111 |
+
help="CFG for save sample.",
|
112 |
+
)
|
113 |
+
parser.add_argument(
|
114 |
+
"--save_infer_steps",
|
115 |
+
type=int,
|
116 |
+
default=20,
|
117 |
+
help="The number of inference steps for save sample.",
|
118 |
+
)
|
119 |
+
parser.add_argument(
|
120 |
+
"--pad_tokens",
|
121 |
+
default=False,
|
122 |
+
action="store_true",
|
123 |
+
help="Flag to pad tokens to length 77.",
|
124 |
+
)
|
125 |
+
parser.add_argument(
|
126 |
+
"--with_prior_preservation",
|
127 |
+
default=False,
|
128 |
+
action="store_true",
|
129 |
+
help="Flag to add prior preservation loss.",
|
130 |
+
)
|
131 |
+
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
|
132 |
+
parser.add_argument(
|
133 |
+
"--num_class_images",
|
134 |
+
type=int,
|
135 |
+
default=100,
|
136 |
+
help=(
|
137 |
+
"Minimal class images for prior preservation loss. If not have enough images, additional images will be"
|
138 |
+
" sampled with class_prompt."
|
139 |
+
),
|
140 |
+
)
|
141 |
+
parser.add_argument(
|
142 |
+
"--output_dir",
|
143 |
+
type=str,
|
144 |
+
default="text-inversion-model",
|
145 |
+
help="The output directory where the model predictions and checkpoints will be written.",
|
146 |
+
)
|
147 |
+
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
148 |
+
parser.add_argument(
|
149 |
+
"--resolution",
|
150 |
+
type=int,
|
151 |
+
default=512,
|
152 |
+
help=(
|
153 |
+
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
154 |
+
" resolution"
|
155 |
+
),
|
156 |
+
)
|
157 |
+
parser.add_argument(
|
158 |
+
"--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution"
|
159 |
+
)
|
160 |
+
parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder")
|
161 |
+
parser.add_argument(
|
162 |
+
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
|
163 |
+
)
|
164 |
+
parser.add_argument(
|
165 |
+
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
|
166 |
+
)
|
167 |
+
parser.add_argument("--num_train_epochs", type=int, default=1)
|
168 |
+
parser.add_argument(
|
169 |
+
"--max_train_steps",
|
170 |
+
type=int,
|
171 |
+
default=None,
|
172 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
173 |
+
)
|
174 |
+
parser.add_argument(
|
175 |
+
"--gradient_accumulation_steps",
|
176 |
+
type=int,
|
177 |
+
default=1,
|
178 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
179 |
+
)
|
180 |
+
parser.add_argument(
|
181 |
+
"--gradient_checkpointing",
|
182 |
+
action="store_true",
|
183 |
+
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
184 |
+
)
|
185 |
+
parser.add_argument(
|
186 |
+
"--learning_rate",
|
187 |
+
type=float,
|
188 |
+
default=5e-6,
|
189 |
+
help="Initial learning rate (after the potential warmup period) to use.",
|
190 |
+
)
|
191 |
+
parser.add_argument(
|
192 |
+
"--scale_lr",
|
193 |
+
action="store_true",
|
194 |
+
default=False,
|
195 |
+
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
196 |
+
)
|
197 |
+
parser.add_argument(
|
198 |
+
"--lr_scheduler",
|
199 |
+
type=str,
|
200 |
+
default="constant",
|
201 |
+
help=(
|
202 |
+
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
203 |
+
' "constant", "constant_with_warmup"]'
|
204 |
+
),
|
205 |
+
)
|
206 |
+
parser.add_argument(
|
207 |
+
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
208 |
+
)
|
209 |
+
parser.add_argument(
|
210 |
+
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
|
211 |
+
)
|
212 |
+
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
213 |
+
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
214 |
+
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
215 |
+
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
216 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
217 |
+
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
218 |
+
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
219 |
+
parser.add_argument(
|
220 |
+
"--hub_model_id",
|
221 |
+
type=str,
|
222 |
+
default=None,
|
223 |
+
help="The name of the repository to keep in sync with the local `output_dir`.",
|
224 |
+
)
|
225 |
+
parser.add_argument(
|
226 |
+
"--logging_dir",
|
227 |
+
type=str,
|
228 |
+
default="logs",
|
229 |
+
help=(
|
230 |
+
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
231 |
+
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
232 |
+
),
|
233 |
+
)
|
234 |
+
parser.add_argument("--log_interval", type=int, default=10, help="Log every N steps.")
|
235 |
+
parser.add_argument("--save_interval", type=int, default=10_000, help="Save weights every N steps.")
|
236 |
+
parser.add_argument("--save_min_steps", type=int, default=0, help="Start saving weights after N steps.")
|
237 |
+
parser.add_argument(
|
238 |
+
"--mixed_precision",
|
239 |
+
type=str,
|
240 |
+
default=None,
|
241 |
+
choices=["no", "fp16", "bf16"],
|
242 |
+
help=(
|
243 |
+
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
244 |
+
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
|
245 |
+
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
|
246 |
+
),
|
247 |
+
)
|
248 |
+
parser.add_argument("--not_cache_latents", action="store_true", help="Do not precompute and cache latents from VAE.")
|
249 |
+
parser.add_argument("--hflip", action="store_true", help="Apply horizontal flip data augmentation.")
|
250 |
+
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
251 |
+
parser.add_argument(
|
252 |
+
"--concepts_list",
|
253 |
+
type=str,
|
254 |
+
default=None,
|
255 |
+
help="Path to json containing multiple concepts, will overwrite parameters like instance_prompt, class_prompt, etc.",
|
256 |
+
)
|
257 |
+
parser.add_argument(
|
258 |
+
"--read_prompts_from_txts",
|
259 |
+
action="store_true",
|
260 |
+
help="Use prompt per image. Put prompts in the same directory as images, e.g. for image.png create image.png.txt.",
|
261 |
+
)
|
262 |
+
|
263 |
+
if input_args is not None:
|
264 |
+
args = parser.parse_args(input_args)
|
265 |
+
else:
|
266 |
+
args = parser.parse_args()
|
267 |
+
|
268 |
+
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
269 |
+
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
270 |
+
args.local_rank = env_local_rank
|
271 |
+
|
272 |
+
return args
|
273 |
+
|
274 |
+
|
275 |
+
class DreamBoothDataset(Dataset):
|
276 |
+
"""
|
277 |
+
A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
|
278 |
+
It pre-processes the images and the tokenizes prompts.
|
279 |
+
"""
|
280 |
+
|
281 |
+
def __init__(
|
282 |
+
self,
|
283 |
+
concepts_list,
|
284 |
+
tokenizer,
|
285 |
+
with_prior_preservation=True,
|
286 |
+
size=512,
|
287 |
+
center_crop=False,
|
288 |
+
num_class_images=None,
|
289 |
+
pad_tokens=False,
|
290 |
+
hflip=False,
|
291 |
+
read_prompts_from_txts=False,
|
292 |
+
):
|
293 |
+
self.size = size
|
294 |
+
self.center_crop = center_crop
|
295 |
+
self.tokenizer = tokenizer
|
296 |
+
self.with_prior_preservation = with_prior_preservation
|
297 |
+
self.pad_tokens = pad_tokens
|
298 |
+
self.read_prompts_from_txts = read_prompts_from_txts
|
299 |
+
|
300 |
+
self.instance_images_path = []
|
301 |
+
self.class_images_path = []
|
302 |
+
|
303 |
+
for concept in concepts_list:
|
304 |
+
inst_img_path = [
|
305 |
+
(x, concept["instance_prompt"])
|
306 |
+
for x in Path(concept["instance_data_dir"]).iterdir()
|
307 |
+
if x.is_file() and not str(x).endswith(".txt")
|
308 |
+
]
|
309 |
+
self.instance_images_path.extend(inst_img_path)
|
310 |
+
|
311 |
+
if with_prior_preservation:
|
312 |
+
class_img_path = [(x, concept["class_prompt"]) for x in Path(concept["class_data_dir"]).iterdir() if x.is_file()]
|
313 |
+
self.class_images_path.extend(class_img_path[:num_class_images])
|
314 |
+
|
315 |
+
random.shuffle(self.instance_images_path)
|
316 |
+
self.num_instance_images = len(self.instance_images_path)
|
317 |
+
self.num_class_images = len(self.class_images_path)
|
318 |
+
self._length = max(self.num_class_images, self.num_instance_images)
|
319 |
+
|
320 |
+
self.image_transforms = transforms.Compose(
|
321 |
+
[
|
322 |
+
transforms.RandomHorizontalFlip(0.5 * hflip),
|
323 |
+
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
|
324 |
+
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
|
325 |
+
transforms.ToTensor(),
|
326 |
+
transforms.Normalize([0.5], [0.5]),
|
327 |
+
]
|
328 |
+
)
|
329 |
+
|
330 |
+
def __len__(self):
|
331 |
+
return self._length
|
332 |
+
|
333 |
+
def __getitem__(self, index):
|
334 |
+
example = {}
|
335 |
+
instance_path, instance_prompt = self.instance_images_path[index % self.num_instance_images]
|
336 |
+
|
337 |
+
if self.read_prompts_from_txts:
|
338 |
+
with open(str(instance_path) + ".txt") as f:
|
339 |
+
instance_prompt = f.read().strip()
|
340 |
+
|
341 |
+
instance_image = Image.open(instance_path)
|
342 |
+
if not instance_image.mode == "RGB":
|
343 |
+
instance_image = instance_image.convert("RGB")
|
344 |
+
|
345 |
+
example["instance_images"] = self.image_transforms(instance_image)
|
346 |
+
example["instance_prompt_ids"] = self.tokenizer(
|
347 |
+
instance_prompt,
|
348 |
+
padding="max_length" if self.pad_tokens else "do_not_pad",
|
349 |
+
truncation=True,
|
350 |
+
max_length=self.tokenizer.model_max_length,
|
351 |
+
).input_ids
|
352 |
+
|
353 |
+
if self.with_prior_preservation:
|
354 |
+
class_path, class_prompt = self.class_images_path[index % self.num_class_images]
|
355 |
+
class_image = Image.open(class_path)
|
356 |
+
if not class_image.mode == "RGB":
|
357 |
+
class_image = class_image.convert("RGB")
|
358 |
+
example["class_images"] = self.image_transforms(class_image)
|
359 |
+
example["class_prompt_ids"] = self.tokenizer(
|
360 |
+
class_prompt,
|
361 |
+
padding="max_length" if self.pad_tokens else "do_not_pad",
|
362 |
+
truncation=True,
|
363 |
+
max_length=self.tokenizer.model_max_length,
|
364 |
+
).input_ids
|
365 |
+
|
366 |
+
return example
|
367 |
+
|
368 |
+
|
369 |
+
class PromptDataset(Dataset):
|
370 |
+
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
|
371 |
+
|
372 |
+
def __init__(self, prompt, num_samples):
|
373 |
+
self.prompt = prompt
|
374 |
+
self.num_samples = num_samples
|
375 |
+
|
376 |
+
def __len__(self):
|
377 |
+
return self.num_samples
|
378 |
+
|
379 |
+
def __getitem__(self, index):
|
380 |
+
example = {}
|
381 |
+
example["prompt"] = self.prompt
|
382 |
+
example["index"] = index
|
383 |
+
return example
|
384 |
+
|
385 |
+
|
386 |
+
class LatentsDataset(Dataset):
|
387 |
+
def __init__(self, latents_cache, text_encoder_cache):
|
388 |
+
self.latents_cache = latents_cache
|
389 |
+
self.text_encoder_cache = text_encoder_cache
|
390 |
+
|
391 |
+
def __len__(self):
|
392 |
+
return len(self.latents_cache)
|
393 |
+
|
394 |
+
def __getitem__(self, index):
|
395 |
+
return self.latents_cache[index], self.text_encoder_cache[index]
|
396 |
+
|
397 |
+
|
398 |
+
class AverageMeter:
|
399 |
+
def __init__(self, name=None):
|
400 |
+
self.name = name
|
401 |
+
self.reset()
|
402 |
+
|
403 |
+
def reset(self):
|
404 |
+
self.sum = self.count = self.avg = 0
|
405 |
+
|
406 |
+
def update(self, val, n=1):
|
407 |
+
self.sum += val * n
|
408 |
+
self.count += n
|
409 |
+
self.avg = self.sum / self.count
|
410 |
+
|
411 |
+
|
412 |
+
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
|
413 |
+
if token is None:
|
414 |
+
token = HfFolder.get_token()
|
415 |
+
if organization is None:
|
416 |
+
username = whoami(token)["name"]
|
417 |
+
return f"{username}/{model_id}"
|
418 |
+
else:
|
419 |
+
return f"{organization}/{model_id}"
|
420 |
+
|
421 |
+
|
422 |
+
def main(args):
|
423 |
+
logging_dir = Path(args.output_dir, "0", args.logging_dir)
|
424 |
+
|
425 |
+
accelerator = Accelerator(
|
426 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
427 |
+
mixed_precision=args.mixed_precision,
|
428 |
+
log_with="tensorboard",
|
429 |
+
project_dir=logging_dir,
|
430 |
+
)
|
431 |
+
|
432 |
+
logging.basicConfig(
|
433 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
434 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
435 |
+
level=logging.INFO,
|
436 |
+
)
|
437 |
+
|
438 |
+
# Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
|
439 |
+
# This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
|
440 |
+
# TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
|
441 |
+
if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
|
442 |
+
raise ValueError(
|
443 |
+
"Gradient accumulation is not supported when training the text encoder in distributed training. "
|
444 |
+
"Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
|
445 |
+
)
|
446 |
+
|
447 |
+
if args.seed is not None:
|
448 |
+
set_seed(args.seed)
|
449 |
+
|
450 |
+
if args.concepts_list is None:
|
451 |
+
args.concepts_list = [
|
452 |
+
{
|
453 |
+
"instance_prompt": args.instance_prompt,
|
454 |
+
"class_prompt": args.class_prompt,
|
455 |
+
"instance_data_dir": args.instance_data_dir,
|
456 |
+
"class_data_dir": args.class_data_dir
|
457 |
+
}
|
458 |
+
]
|
459 |
+
else:
|
460 |
+
with open(args.concepts_list, "r") as f:
|
461 |
+
args.concepts_list = json.load(f)
|
462 |
+
|
463 |
+
if args.with_prior_preservation:
|
464 |
+
pipeline = None
|
465 |
+
for concept in args.concepts_list:
|
466 |
+
class_images_dir = Path(concept["class_data_dir"])
|
467 |
+
class_images_dir.mkdir(parents=True, exist_ok=True)
|
468 |
+
cur_class_images = len(list(class_images_dir.iterdir()))
|
469 |
+
|
470 |
+
if cur_class_images < args.num_class_images:
|
471 |
+
torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
|
472 |
+
if pipeline is None:
|
473 |
+
pipeline = StableDiffusionPipeline.from_pretrained(
|
474 |
+
args.pretrained_model_name_or_path,
|
475 |
+
vae=AutoencoderKL.from_pretrained(
|
476 |
+
args.pretrained_vae_name_or_path or args.pretrained_model_name_or_path,
|
477 |
+
subfolder=None if args.pretrained_vae_name_or_path else "vae",
|
478 |
+
revision=None if args.pretrained_vae_name_or_path else args.revision,
|
479 |
+
torch_dtype=torch_dtype
|
480 |
+
),
|
481 |
+
torch_dtype=torch_dtype,
|
482 |
+
safety_checker=None,
|
483 |
+
revision=args.revision
|
484 |
+
)
|
485 |
+
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
|
486 |
+
if is_xformers_available():
|
487 |
+
pipeline.enable_xformers_memory_efficient_attention()
|
488 |
+
pipeline.set_progress_bar_config(disable=True)
|
489 |
+
pipeline.to(accelerator.device)
|
490 |
+
|
491 |
+
num_new_images = args.num_class_images - cur_class_images
|
492 |
+
logger.info(f"Number of class images to sample: {num_new_images}.")
|
493 |
+
|
494 |
+
sample_dataset = PromptDataset(concept["class_prompt"], num_new_images)
|
495 |
+
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)
|
496 |
+
|
497 |
+
sample_dataloader = accelerator.prepare(sample_dataloader)
|
498 |
+
|
499 |
+
with torch.autocast("cuda"), torch.inference_mode():
|
500 |
+
for example in tqdm(
|
501 |
+
sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
|
502 |
+
):
|
503 |
+
images = pipeline(
|
504 |
+
example["prompt"],
|
505 |
+
num_inference_steps=args.save_infer_steps
|
506 |
+
).images
|
507 |
+
|
508 |
+
for i, image in enumerate(images):
|
509 |
+
hash_image = hashlib.sha1(image.tobytes()).hexdigest()
|
510 |
+
image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
|
511 |
+
image.save(image_filename)
|
512 |
+
|
513 |
+
del pipeline
|
514 |
+
if torch.cuda.is_available():
|
515 |
+
torch.cuda.empty_cache()
|
516 |
+
|
517 |
+
# Load the tokenizer
|
518 |
+
if args.tokenizer_name:
|
519 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
520 |
+
args.tokenizer_name,
|
521 |
+
revision=args.revision,
|
522 |
+
)
|
523 |
+
elif args.pretrained_model_name_or_path:
|
524 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
525 |
+
args.pretrained_model_name_or_path,
|
526 |
+
subfolder="tokenizer",
|
527 |
+
revision=args.revision,
|
528 |
+
)
|
529 |
+
|
530 |
+
# Load models and create wrapper for stable diffusion
|
531 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
532 |
+
args.pretrained_model_name_or_path,
|
533 |
+
subfolder="text_encoder",
|
534 |
+
revision=args.revision,
|
535 |
+
)
|
536 |
+
vae = AutoencoderKL.from_pretrained(
|
537 |
+
args.pretrained_model_name_or_path,
|
538 |
+
subfolder="vae",
|
539 |
+
revision=args.revision,
|
540 |
+
)
|
541 |
+
unet = UNet2DConditionModel.from_pretrained(
|
542 |
+
args.pretrained_model_name_or_path,
|
543 |
+
subfolder="unet",
|
544 |
+
revision=args.revision,
|
545 |
+
torch_dtype=torch.float32
|
546 |
+
)
|
547 |
+
|
548 |
+
vae.requires_grad_(False)
|
549 |
+
if not args.train_text_encoder:
|
550 |
+
text_encoder.requires_grad_(False)
|
551 |
+
|
552 |
+
if is_xformers_available():
|
553 |
+
vae.enable_xformers_memory_efficient_attention()
|
554 |
+
unet.enable_xformers_memory_efficient_attention()
|
555 |
+
else:
|
556 |
+
logger.warning("xformers is not available. Make sure it is installed correctly")
|
557 |
+
|
558 |
+
if args.gradient_checkpointing:
|
559 |
+
unet.enable_gradient_checkpointing()
|
560 |
+
if args.train_text_encoder:
|
561 |
+
text_encoder.gradient_checkpointing_enable()
|
562 |
+
|
563 |
+
if args.scale_lr:
|
564 |
+
args.learning_rate = (
|
565 |
+
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
|
566 |
+
)
|
567 |
+
|
568 |
+
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
|
569 |
+
if args.use_8bit_adam:
|
570 |
+
try:
|
571 |
+
import bitsandbytes as bnb
|
572 |
+
except ImportError:
|
573 |
+
raise ImportError(
|
574 |
+
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
|
575 |
+
)
|
576 |
+
|
577 |
+
optimizer_class = bnb.optim.AdamW8bit
|
578 |
+
else:
|
579 |
+
optimizer_class = torch.optim.AdamW
|
580 |
+
|
581 |
+
params_to_optimize = (
|
582 |
+
itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters()
|
583 |
+
)
|
584 |
+
optimizer = optimizer_class(
|
585 |
+
params_to_optimize,
|
586 |
+
lr=args.learning_rate,
|
587 |
+
betas=(args.adam_beta1, args.adam_beta2),
|
588 |
+
weight_decay=args.adam_weight_decay,
|
589 |
+
eps=args.adam_epsilon,
|
590 |
+
)
|
591 |
+
|
592 |
+
noise_scheduler = DDPMScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler")
|
593 |
+
|
594 |
+
train_dataset = DreamBoothDataset(
|
595 |
+
concepts_list=args.concepts_list,
|
596 |
+
tokenizer=tokenizer,
|
597 |
+
with_prior_preservation=args.with_prior_preservation,
|
598 |
+
size=args.resolution,
|
599 |
+
center_crop=args.center_crop,
|
600 |
+
num_class_images=args.num_class_images,
|
601 |
+
pad_tokens=args.pad_tokens,
|
602 |
+
hflip=args.hflip,
|
603 |
+
read_prompts_from_txts=args.read_prompts_from_txts,
|
604 |
+
)
|
605 |
+
|
606 |
+
def collate_fn(examples):
|
607 |
+
input_ids = [example["instance_prompt_ids"] for example in examples]
|
608 |
+
pixel_values = [example["instance_images"] for example in examples]
|
609 |
+
|
610 |
+
# Concat class and instance examples for prior preservation.
|
611 |
+
# We do this to avoid doing two forward passes.
|
612 |
+
if args.with_prior_preservation:
|
613 |
+
input_ids += [example["class_prompt_ids"] for example in examples]
|
614 |
+
pixel_values += [example["class_images"] for example in examples]
|
615 |
+
|
616 |
+
pixel_values = torch.stack(pixel_values)
|
617 |
+
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
|
618 |
+
|
619 |
+
input_ids = tokenizer.pad(
|
620 |
+
{"input_ids": input_ids},
|
621 |
+
padding=True,
|
622 |
+
return_tensors="pt",
|
623 |
+
).input_ids
|
624 |
+
|
625 |
+
batch = {
|
626 |
+
"input_ids": input_ids,
|
627 |
+
"pixel_values": pixel_values,
|
628 |
+
}
|
629 |
+
return batch
|
630 |
+
|
631 |
+
train_dataloader = torch.utils.data.DataLoader(
|
632 |
+
train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate_fn, pin_memory=True
|
633 |
+
)
|
634 |
+
|
635 |
+
weight_dtype = torch.float32
|
636 |
+
if args.mixed_precision == "fp16":
|
637 |
+
weight_dtype = torch.float16
|
638 |
+
elif args.mixed_precision == "bf16":
|
639 |
+
weight_dtype = torch.bfloat16
|
640 |
+
|
641 |
+
# Move text_encode and vae to gpu.
|
642 |
+
# For mixed precision training we cast the text_encoder and vae weights to half-precision
|
643 |
+
# as these models are only used for inference, keeping weights in full precision is not required.
|
644 |
+
vae.to(accelerator.device, dtype=weight_dtype)
|
645 |
+
if not args.train_text_encoder:
|
646 |
+
text_encoder.to(accelerator.device, dtype=weight_dtype)
|
647 |
+
|
648 |
+
if not args.not_cache_latents:
|
649 |
+
latents_cache = []
|
650 |
+
text_encoder_cache = []
|
651 |
+
for batch in tqdm(train_dataloader, desc="Caching latents"):
|
652 |
+
with torch.no_grad():
|
653 |
+
batch["pixel_values"] = batch["pixel_values"].to(accelerator.device, non_blocking=True, dtype=weight_dtype)
|
654 |
+
batch["input_ids"] = batch["input_ids"].to(accelerator.device, non_blocking=True)
|
655 |
+
latents_cache.append(vae.encode(batch["pixel_values"]).latent_dist)
|
656 |
+
if args.train_text_encoder:
|
657 |
+
text_encoder_cache.append(batch["input_ids"])
|
658 |
+
else:
|
659 |
+
text_encoder_cache.append(text_encoder(batch["input_ids"])[0])
|
660 |
+
train_dataset = LatentsDataset(latents_cache, text_encoder_cache)
|
661 |
+
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=1, collate_fn=lambda x: x, shuffle=True)
|
662 |
+
|
663 |
+
del vae
|
664 |
+
if not args.train_text_encoder:
|
665 |
+
del text_encoder
|
666 |
+
if torch.cuda.is_available():
|
667 |
+
torch.cuda.empty_cache()
|
668 |
+
|
669 |
+
# Scheduler and math around the number of training steps.
|
670 |
+
overrode_max_train_steps = False
|
671 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
672 |
+
if args.max_train_steps is None:
|
673 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
674 |
+
overrode_max_train_steps = True
|
675 |
+
|
676 |
+
lr_scheduler = get_scheduler(
|
677 |
+
args.lr_scheduler,
|
678 |
+
optimizer=optimizer,
|
679 |
+
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
|
680 |
+
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
|
681 |
+
)
|
682 |
+
|
683 |
+
if args.train_text_encoder:
|
684 |
+
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
685 |
+
unet, text_encoder, optimizer, train_dataloader, lr_scheduler
|
686 |
+
)
|
687 |
+
else:
|
688 |
+
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
689 |
+
unet, optimizer, train_dataloader, lr_scheduler
|
690 |
+
)
|
691 |
+
|
692 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
693 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
694 |
+
if overrode_max_train_steps:
|
695 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
696 |
+
# Afterwards we recalculate our number of training epochs
|
697 |
+
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
698 |
+
|
699 |
+
# We need to initialize the trackers we use, and also store our configuration.
|
700 |
+
# The trackers initializes automatically on the main process.
|
701 |
+
if accelerator.is_main_process:
|
702 |
+
accelerator.init_trackers("dreambooth")
|
703 |
+
|
704 |
+
# Train!
|
705 |
+
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
706 |
+
|
707 |
+
logger.info("***** Running training *****")
|
708 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
709 |
+
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
|
710 |
+
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
711 |
+
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
712 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
713 |
+
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
714 |
+
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
715 |
+
|
716 |
+
def save_weights(step):
|
717 |
+
# Create the pipeline using using the trained modules and save it.
|
718 |
+
if accelerator.is_main_process:
|
719 |
+
if args.train_text_encoder:
|
720 |
+
text_enc_model = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True)
|
721 |
+
else:
|
722 |
+
text_enc_model = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision)
|
723 |
+
pipeline = StableDiffusionPipeline.from_pretrained(
|
724 |
+
args.pretrained_model_name_or_path,
|
725 |
+
unet=accelerator.unwrap_model(unet, keep_fp32_wrapper=True),
|
726 |
+
text_encoder=text_enc_model,
|
727 |
+
vae=AutoencoderKL.from_pretrained(
|
728 |
+
args.pretrained_vae_name_or_path or args.pretrained_model_name_or_path,
|
729 |
+
subfolder=None if args.pretrained_vae_name_or_path else "vae",
|
730 |
+
revision=None if args.pretrained_vae_name_or_path else args.revision,
|
731 |
+
),
|
732 |
+
safety_checker=None,
|
733 |
+
torch_dtype=torch.float16,
|
734 |
+
revision=args.revision,
|
735 |
+
)
|
736 |
+
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
|
737 |
+
if is_xformers_available():
|
738 |
+
pipeline.enable_xformers_memory_efficient_attention()
|
739 |
+
save_dir = os.path.join(args.output_dir, f"{step}")
|
740 |
+
pipeline.save_pretrained(save_dir)
|
741 |
+
with open(os.path.join(save_dir, "args.json"), "w") as f:
|
742 |
+
json.dump(args.__dict__, f, indent=2)
|
743 |
+
|
744 |
+
if args.save_sample_prompt is not None:
|
745 |
+
pipeline = pipeline.to(accelerator.device)
|
746 |
+
g_cuda = torch.Generator(device=accelerator.device).manual_seed(args.seed)
|
747 |
+
pipeline.set_progress_bar_config(disable=True)
|
748 |
+
sample_dir = os.path.join(save_dir, "samples")
|
749 |
+
os.makedirs(sample_dir, exist_ok=True)
|
750 |
+
with torch.autocast("cuda"), torch.inference_mode():
|
751 |
+
for i in tqdm(range(args.n_save_sample), desc="Generating samples"):
|
752 |
+
images = pipeline(
|
753 |
+
args.save_sample_prompt,
|
754 |
+
negative_prompt=args.save_sample_negative_prompt,
|
755 |
+
guidance_scale=args.save_guidance_scale,
|
756 |
+
num_inference_steps=args.save_infer_steps,
|
757 |
+
generator=g_cuda
|
758 |
+
).images
|
759 |
+
images[0].save(os.path.join(sample_dir, f"{i}.png"))
|
760 |
+
del pipeline
|
761 |
+
if torch.cuda.is_available():
|
762 |
+
torch.cuda.empty_cache()
|
763 |
+
print(f"[*] Weights saved at {save_dir}")
|
764 |
+
|
765 |
+
# Only show the progress bar once on each machine.
|
766 |
+
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
|
767 |
+
progress_bar.set_description("Steps")
|
768 |
+
global_step = 0
|
769 |
+
loss_avg = AverageMeter()
|
770 |
+
text_enc_context = nullcontext() if args.train_text_encoder else torch.no_grad()
|
771 |
+
for epoch in range(args.num_train_epochs):
|
772 |
+
unet.train()
|
773 |
+
if args.train_text_encoder:
|
774 |
+
text_encoder.train()
|
775 |
+
for step, batch in enumerate(train_dataloader):
|
776 |
+
with accelerator.accumulate(unet):
|
777 |
+
# Convert images to latent space
|
778 |
+
with torch.no_grad():
|
779 |
+
if not args.not_cache_latents:
|
780 |
+
latent_dist = batch[0][0]
|
781 |
+
else:
|
782 |
+
latent_dist = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist
|
783 |
+
latents = latent_dist.sample() * 0.18215
|
784 |
+
|
785 |
+
# Sample noise that we'll add to the latents
|
786 |
+
noise = torch.randn_like(latents)
|
787 |
+
bsz = latents.shape[0]
|
788 |
+
# Sample a random timestep for each image
|
789 |
+
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
|
790 |
+
timesteps = timesteps.long()
|
791 |
+
|
792 |
+
# Add noise to the latents according to the noise magnitude at each timestep
|
793 |
+
# (this is the forward diffusion process)
|
794 |
+
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
795 |
+
|
796 |
+
# Get the text embedding for conditioning
|
797 |
+
with text_enc_context:
|
798 |
+
if not args.not_cache_latents:
|
799 |
+
if args.train_text_encoder:
|
800 |
+
encoder_hidden_states = text_encoder(batch[0][1])[0]
|
801 |
+
else:
|
802 |
+
encoder_hidden_states = batch[0][1]
|
803 |
+
else:
|
804 |
+
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
|
805 |
+
|
806 |
+
# Predict the noise residual
|
807 |
+
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
808 |
+
|
809 |
+
# Get the target for loss depending on the prediction type
|
810 |
+
if noise_scheduler.config.prediction_type == "epsilon":
|
811 |
+
target = noise
|
812 |
+
elif noise_scheduler.config.prediction_type == "v_prediction":
|
813 |
+
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
814 |
+
else:
|
815 |
+
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
|
816 |
+
|
817 |
+
if args.with_prior_preservation:
|
818 |
+
# Chunk the noise and model_pred into two parts and compute the loss on each part separately.
|
819 |
+
model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
|
820 |
+
target, target_prior = torch.chunk(target, 2, dim=0)
|
821 |
+
|
822 |
+
# Compute instance loss
|
823 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
824 |
+
|
825 |
+
# Compute prior loss
|
826 |
+
prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")
|
827 |
+
|
828 |
+
# Add the prior loss to the instance loss.
|
829 |
+
loss = loss + args.prior_loss_weight * prior_loss
|
830 |
+
else:
|
831 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
832 |
+
|
833 |
+
accelerator.backward(loss)
|
834 |
+
# if accelerator.sync_gradients:
|
835 |
+
# params_to_clip = (
|
836 |
+
# itertools.chain(unet.parameters(), text_encoder.parameters())
|
837 |
+
# if args.train_text_encoder
|
838 |
+
# else unet.parameters()
|
839 |
+
# )
|
840 |
+
# accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
|
841 |
+
optimizer.step()
|
842 |
+
lr_scheduler.step()
|
843 |
+
optimizer.zero_grad(set_to_none=True)
|
844 |
+
loss_avg.update(loss.detach_(), bsz)
|
845 |
+
|
846 |
+
if not global_step % args.log_interval:
|
847 |
+
logs = {"loss": loss_avg.avg.item(), "lr": lr_scheduler.get_last_lr()[0]}
|
848 |
+
progress_bar.set_postfix(**logs)
|
849 |
+
accelerator.log(logs, step=global_step)
|
850 |
+
|
851 |
+
if global_step > 0 and not global_step % args.save_interval and global_step >= args.save_min_steps:
|
852 |
+
save_weights(global_step)
|
853 |
+
|
854 |
+
progress_bar.update(1)
|
855 |
+
global_step += 1
|
856 |
+
|
857 |
+
if global_step >= args.max_train_steps:
|
858 |
+
break
|
859 |
+
|
860 |
+
accelerator.wait_for_everyone()
|
861 |
+
|
862 |
+
save_weights(global_step)
|
863 |
+
|
864 |
+
accelerator.end_training()
|
865 |
+
|
866 |
+
|
867 |
+
if __name__ == "__main__":
|
868 |
+
args = parse_args()
|
869 |
+
main(args)
|