Divyanshu04 commited on
Commit
073d257
·
1 Parent(s): 6d87ed3
Files changed (1) hide show
  1. app.py +42 -26
app.py CHANGED
@@ -6,7 +6,8 @@ import os
6
  from torch import autocast
7
  from diffusers import StableDiffusionPipeline, DDIMScheduler, DiffusionPipeline
8
  import streamlit as st
9
-
 
10
  from huggingface_hub import login
11
 
12
  # HF_TOKEN = os.environ.get("HF_TOKEN")
@@ -14,11 +15,11 @@ from huggingface_hub import login
14
  login(token='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')
15
 
16
 
17
- pipe = StableDiffusionPipeline.from_pretrained("Divyanshu04/Finetuned-model", safety_checker=None, torch_dtype=torch.float32).to("cpu")
18
 
19
- pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
20
  # pipe.enable_xformers_memory_efficient_attention() #if gpu is available
21
- g_cuda = None
22
 
23
  FILE = Path(__file__).resolve()
24
  ROOT = FILE.parents[0] # YOLOv5 root directory
@@ -27,6 +28,16 @@ if str(ROOT) not in sys.path:
27
  ROOT = Path(os.path.relpath(ROOT, Path.cwd()))
28
 
29
  app = Flask(__name__)
 
 
 
 
 
 
 
 
 
 
30
 
31
 
32
  # @app.route("/", methods=["POST"])
@@ -41,29 +52,34 @@ def generate():
41
 
42
  if Submit:
43
 
44
- guidance_scale = 7.5
45
- num_inference_steps = 24
46
- height = 512
47
- width = 512
48
-
49
- g_cuda = torch.Generator(device='cpu')
50
- seed = 52362
51
- g_cuda.manual_seed(seed)
52
-
53
-
54
- with autocast("cpu"), torch.inference_mode():
55
- images = pipe(
56
- prompt,
57
- height=height,
58
- width=width,
59
- negative_prompt=negative_prompt,
60
- num_images_per_prompt=num_samples,
61
- num_inference_steps=num_inference_steps,
62
- guidance_scale=guidance_scale,
63
- generator=g_cuda
64
- ).images
 
 
 
 
 
65
 
66
- st.image(images)
67
 
68
  else:
69
  st.write('<Enter parameters to generate image>')
 
6
  from torch import autocast
7
  from diffusers import StableDiffusionPipeline, DDIMScheduler, DiffusionPipeline
8
  import streamlit as st
9
+ import io
10
+ from PIL import Image
11
  from huggingface_hub import login
12
 
13
  # HF_TOKEN = os.environ.get("HF_TOKEN")
 
15
  login(token='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')
16
 
17
 
18
+ # pipe = StableDiffusionPipeline.from_pretrained("Divyanshu04/Finetuned-model", safety_checker=None, torch_dtype=torch.float16).to("cpu")
19
 
20
+ # pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
21
  # pipe.enable_xformers_memory_efficient_attention() #if gpu is available
22
+ # g_cuda = None
23
 
24
  FILE = Path(__file__).resolve()
25
  ROOT = FILE.parents[0] # YOLOv5 root directory
 
28
  ROOT = Path(os.path.relpath(ROOT, Path.cwd()))
29
 
30
  app = Flask(__name__)
31
+
32
+ import requests
33
+
34
+ API_URL = "https://api-inference.huggingface.co/models/Divyanshu04/Finetuned-model"
35
+ headers = {"Authorization": "Bearer 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"}
36
+
37
+ def query(payload):
38
+ response = requests.post(API_URL, headers=headers, json=payload)
39
+ return response.content
40
+
41
 
42
 
43
  # @app.route("/", methods=["POST"])
 
52
 
53
  if Submit:
54
 
55
+ image_bytes = query({"inputs": prompt,})
56
+ # You can access the image with PIL.Image for example
57
+
58
+ image = Image.open(io.BytesIO(image_bytes))
59
+
60
+ # guidance_scale = 7.5
61
+ # num_inference_steps = 24
62
+ # height = 512
63
+ # width = 512
64
+
65
+ # g_cuda = torch.Generator(device='cpu')
66
+ # seed = 52362
67
+ # g_cuda.manual_seed(seed)
68
+
69
+
70
+ # with autocast("cpu"), torch.inference_mode():
71
+ # images = pipe(
72
+ # prompt,
73
+ # height=height,
74
+ # width=width,
75
+ # negative_prompt=negative_prompt,
76
+ # num_images_per_prompt=num_samples,
77
+ # num_inference_steps=num_inference_steps,
78
+ # guidance_scale=guidance_scale,
79
+ # generator=g_cuda
80
+ # ).images
81
 
82
+ st.image(image)
83
 
84
  else:
85
  st.write('<Enter parameters to generate image>')