Divyanshu04 commited on
Commit
522dbe7
·
1 Parent(s): c1d6f67
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -11,13 +11,13 @@ from huggingface_hub import login
11
 
12
  # HF_TOKEN = os.environ.get("HF_TOKEN")
13
 
14
- login()
15
 
16
 
17
  # model_path = WEIGHTS_DIR # If you want to use previously trained model saved in gdrive, replace this with the full path of model in gdrive
18
  # headers = {"Authorization": "Bearer xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"}
19
 
20
- pipe = StableDiffusionPipeline.from_pretrained("Divyanshu04/Finetuned-model", safety_checker=None, torch_dtype=torch.float32).to("cuda")
21
 
22
  pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
23
  pipe.enable_xformers_memory_efficient_attention()
@@ -49,13 +49,13 @@ def generate():
49
  height = 512
50
  width = 512
51
 
52
- g_cuda = torch.Generator(device='cuda')
53
  seed = 52362
54
  g_cuda.manual_seed(seed)
55
 
56
  # commandline_args = os.environ.get('COMMANDLINE_ARGS', "--skip-torch-cuda-test --no-half")
57
 
58
- with autocast("cuda"), torch.inference_mode():
59
  images = pipe(
60
  prompt,
61
  height=height,
 
11
 
12
  # HF_TOKEN = os.environ.get("HF_TOKEN")
13
 
14
+ login(token='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')
15
 
16
 
17
  # model_path = WEIGHTS_DIR # If you want to use previously trained model saved in gdrive, replace this with the full path of model in gdrive
18
  # headers = {"Authorization": "Bearer xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"}
19
 
20
+ pipe = StableDiffusionPipeline.from_pretrained("Divyanshu04/Finetuned-model", safety_checker=None, torch_dtype=torch.float32).to("cpu")
21
 
22
  pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
23
  pipe.enable_xformers_memory_efficient_attention()
 
49
  height = 512
50
  width = 512
51
 
52
+ g_cuda = torch.Generator(device='cpu')
53
  seed = 52362
54
  g_cuda.manual_seed(seed)
55
 
56
  # commandline_args = os.environ.get('COMMANDLINE_ARGS', "--skip-torch-cuda-test --no-half")
57
 
58
+ with autocast("cpu"), torch.inference_mode():
59
  images = pipe(
60
  prompt,
61
  height=height,