File size: 4,934 Bytes
62138c4 c2c5723 8991905 c2c5723 51a7d9e 62138c4 e32f016 6386510 c2c5723 6386510 62138c4 c2c5723 b70c257 c2c5723 62138c4 b4fc3f1 c2c5723 652620b a1ebba4 62138c4 7cb9567 c2c5723 b70c257 c2c5723 b70c257 8991905 62138c4 8991905 25e599b 62138c4 3365a48 62138c4 25e599b ee642b9 8991905 1eaecfb b70c257 c2c5723 f3bc24e c2c5723 f77fb99 c2c5723 b70c257 f3bc24e c2c5723 561ff95 c2c5723 51a7d9e c2c5723 62138c4 c2c5723 51a7d9e c2c5723 51a7d9e 25e599b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import os
from dotenv import load_dotenv
from langchain_community.vectorstores import Qdrant
from langchain_huggingface import HuggingFaceEmbeddings
from langchain.llms import HuggingFacePipeline
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from langchain.prompts import ChatPromptTemplate
from langchain.schema.runnable import RunnablePassthrough
from langchain.schema.output_parser import StrOutputParser
from qdrant_client import QdrantClient, models
from langchain_qdrant import Qdrant
import gradio as gr
import torch
import spaces
# Load environment variables
load_dotenv()
# Verify environment variables
qdrant_url = os.getenv("QDRANT_URL")
qdrant_api_key = os.getenv("QDRANT_API_KEY")
print(f"QDRANT_URL: {qdrant_url}")
print(f"QDRANT_API_KEY: {qdrant_api_key}")
# HuggingFace Embeddings
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-large-en-v1.5")
# Qdrant Client Setup
client = QdrantClient(
url=qdrant_url,
api_key=qdrant_api_key,
#prefer_grpc=True
)
collection_name="mawared"
# Check if the connection is successful
try:
client.get_collection(collection_name)
print(f"Successfully connected to Qdrant collection: {collection_name}")
except Exception as e:
print(f"Failed to connect to Qdrant: {e}")
raise e
# Try to create collection, handle if it already exists
try:
client.create_collection(
collection_name=collection_name,
vectors_config=models.VectorParams(
size=768, # GTE-large embedding size
distance=models.Distance.COSINE
),
)
print(f"Created new collection: {collection_name}")
except Exception as e:
if "already exists" in str(e):
print(f"Collection {collection_name} already exists, continuing...")
else:
raise e
# Create Qdrant vector store
db = Qdrant(
client=client,
collection_name=collection_name,
embeddings=embeddings,
)
# Create retriever
retriever = db.as_retriever(
search_type="similarity",
search_kwargs={"k": 5}
)
# Load Hugging Face Model
model_name = "NousResearch/Hermes-3-Llama-3.2-3B" # Replace with your desired model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", trust_remote_code=True)
# Ensure the model is on the GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Create Hugging Face Pipeline with the specified model and tokenizer
hf_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
# LangChain LLM using Hugging Face Pipeline
llm = HuggingFacePipeline(pipeline=hf_pipeline)
# Create prompt template
template = """
You are an expert assistant specializing in the Mawared HR System. Your task is to answer the user's question strictly based on the provided context. If the context lacks sufficient information, ask focused clarifying questions to gather additional details.
To improve your responses, follow these steps:
Chain-of-Thought (COT): Break down complex queries into logical steps. Use tags like [Step 1], [Step 2], etc., to label each part of the reasoning process. This helps structure your thinking and ensure clarity. For example:
[Step 1] Identify the key details in the context relevant to the question.
[Step 2] Break down any assumptions or information gaps.
[Step 3] Combine all pieces to form the final, well-reasoned response.
Reasoning: Demonstrate a clear logical connection between the context and your answer at each step. If information is missing or unclear, indicate the gap using tags like [Missing Information] and ask relevant follow-up questions to fill that gap.
Clarity and Precision: Provide direct, concise answers focused only on the context. Avoid including speculative or unrelated information.
Follow-up Questions: If the context is insufficient, focus on asking specific, relevant questions. Label them as [Clarifying Question] to indicate they are needed to complete the response. For example:
[Clarifying Question] Could you specify which employee section you're referring to?
Context:
{context}
Question:
{question}
Answer
"""
prompt = ChatPromptTemplate.from_template(template)
# Create the RAG chain
rag_chain = (
{"context": retriever, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
# Define the Gradio function
@spaces.GPU()
def ask_question_gradio(question):
result = ""
for chunk in rag_chain.stream(question):
result += chunk
return result
# Create the Gradio interface
interface = gr.Interface(
fn=ask_question_gradio,
inputs="text",
outputs="text",
title="Mawared Expert Assistant",
description="Ask questions about the Mawared HR System or any related topic using Chain-of-Thought (CoT) and RAG principles.",
theme="compact",
)
# Launch Gradio app
if __name__ == "__main__":
interface.launch() |