Daemontatox commited on
Commit
8991905
·
verified ·
1 Parent(s): c2c5723

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -11
app.py CHANGED
@@ -1,6 +1,7 @@
1
  from langchain_community.vectorstores import Qdrant
2
- from langchain_groq import ChatGroq
3
  from langchain_huggingface import HuggingFaceEmbeddings
 
 
4
  import os
5
  from dotenv import load_dotenv
6
  from langchain.prompts import ChatPromptTemplate
@@ -13,8 +14,6 @@ import gradio as gr
13
  # Load environment variables
14
  load_dotenv()
15
 
16
- os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API")
17
-
18
  # HuggingFace Embeddings
19
  embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-large-en-v1.5")
20
 
@@ -56,14 +55,14 @@ retriever = db.as_retriever(
56
  search_kwargs={"k": 5}
57
  )
58
 
59
- # LLM setup
60
- llm = ChatGroq(
61
- model="llama-3.3-70b-versatile",
62
- temperature=0.1,
63
- max_tokens=None,
64
- timeout=None,
65
- max_retries=2,
66
- )
67
 
68
  # Create prompt template
69
  template = """
 
1
  from langchain_community.vectorstores import Qdrant
 
2
  from langchain_huggingface import HuggingFaceEmbeddings
3
+ from langchain.llms import HuggingFacePipeline
4
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
5
  import os
6
  from dotenv import load_dotenv
7
  from langchain.prompts import ChatPromptTemplate
 
14
  # Load environment variables
15
  load_dotenv()
16
 
 
 
17
  # HuggingFace Embeddings
18
  embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-large-en-v1.5")
19
 
 
55
  search_kwargs={"k": 5}
56
  )
57
 
58
+ # Load Hugging Face Model
59
+ model_name = "meta-llama/Llama-2-7b-chat-hf" # Replace with your desired model
60
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
61
+ model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", trust_remote_code=True)
62
+ hf_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
63
+
64
+ # LangChain LLM using Hugging Face Pipeline
65
+ llm = HuggingFacePipeline(pipeline=hf_pipeline)
66
 
67
  # Create prompt template
68
  template = """