Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
from langchain_community.vectorstores import Qdrant
|
2 |
-
from langchain_groq import ChatGroq
|
3 |
from langchain_huggingface import HuggingFaceEmbeddings
|
|
|
|
|
4 |
import os
|
5 |
from dotenv import load_dotenv
|
6 |
from langchain.prompts import ChatPromptTemplate
|
@@ -13,8 +14,6 @@ import gradio as gr
|
|
13 |
# Load environment variables
|
14 |
load_dotenv()
|
15 |
|
16 |
-
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API")
|
17 |
-
|
18 |
# HuggingFace Embeddings
|
19 |
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-large-en-v1.5")
|
20 |
|
@@ -56,14 +55,14 @@ retriever = db.as_retriever(
|
|
56 |
search_kwargs={"k": 5}
|
57 |
)
|
58 |
|
59 |
-
#
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
)
|
67 |
|
68 |
# Create prompt template
|
69 |
template = """
|
|
|
1 |
from langchain_community.vectorstores import Qdrant
|
|
|
2 |
from langchain_huggingface import HuggingFaceEmbeddings
|
3 |
+
from langchain.llms import HuggingFacePipeline
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
5 |
import os
|
6 |
from dotenv import load_dotenv
|
7 |
from langchain.prompts import ChatPromptTemplate
|
|
|
14 |
# Load environment variables
|
15 |
load_dotenv()
|
16 |
|
|
|
|
|
17 |
# HuggingFace Embeddings
|
18 |
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-large-en-v1.5")
|
19 |
|
|
|
55 |
search_kwargs={"k": 5}
|
56 |
)
|
57 |
|
58 |
+
# Load Hugging Face Model
|
59 |
+
model_name = "meta-llama/Llama-2-7b-chat-hf" # Replace with your desired model
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
61 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", trust_remote_code=True)
|
62 |
+
hf_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
63 |
+
|
64 |
+
# LangChain LLM using Hugging Face Pipeline
|
65 |
+
llm = HuggingFacePipeline(pipeline=hf_pipeline)
|
66 |
|
67 |
# Create prompt template
|
68 |
template = """
|