File size: 11,749 Bytes
69437e4
 
 
 
07b8fd8
 
69437e4
 
 
 
 
 
 
 
0971cfa
69437e4
0971cfa
 
 
c6a9793
0971cfa
69437e4
0971cfa
69437e4
0971cfa
69437e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0971cfa
69437e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0971cfa
 
 
69437e4
 
 
 
 
 
0971cfa
69437e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6a9793
69437e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4937ac7
0971cfa
69437e4
 
 
0971cfa
4937ac7
69437e4
 
 
 
0971cfa
 
 
c6a9793
0971cfa
69437e4
0971cfa
 
e00c04d
4937ac7
0971cfa
 
 
 
4937ac7
0971cfa
c56b33e
b61d487
0971cfa
 
 
b2fd468
90cb3d2
69437e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0971cfa
69437e4
 
 
 
 
 
 
 
 
 
 
0971cfa
69437e4
 
 
 
0971cfa
 
69437e4
 
 
 
 
 
 
0971cfa
 
69437e4
0971cfa
 
 
4937ac7
0971cfa
4937ac7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import gradio as gr
import requests
from bs4 import BeautifulSoup
import io
import os
import base64
import zipfile
from PIL import Image
from io import BytesIO
import tempfile
import sys
import subprocess

#############################################
# PART 1: YOUR EXISTING PLOTS & FUNCTIONALITY
#############################################

# For demonstration, assume you have a small data_full for "tiny" benchmarks:
data_full = [
    # your existing data
]

columns = ["Model Configuration", "Model Link", "tinyArc", "tinyHellaswag", 
           "tinyMMLU", "tinyTruthfulQA", "tinyTruthfulQA_mc1", "tinyWinogrande"]
df_full = pd.DataFrame(data_full, columns=columns)

def plot_average_scores():
    df_full["Average Score"] = df_full.iloc[:, 2:].mean(axis=1)
    df_avg_sorted = df_full.sort_values(by="Average Score", ascending=False)

    plt.figure(figsize=(14, 10))
    plt.barh(df_avg_sorted["Model Configuration"], df_avg_sorted["Average Score"])
    plt.title("Average Performance of Models Across Tasks", fontsize=16)
    plt.xlabel("Average Score", fontsize=14)
    plt.ylabel("Model Configuration", fontsize=14)
    plt.gca().invert_yaxis()
    plt.grid(axis='x', linestyle='--', alpha=0.7)
    plt.tight_layout()
    
    img_buffer = io.BytesIO()
    plt.savefig(img_buffer, format='png')
    img_buffer.seek(0)
    img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
    plt.close()

    pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
    temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
    pil_image.save(temp_image_file.name)
    return pil_image, temp_image_file.name

def plot_task_performance():
    df_full_melted = df_full.melt(id_vars=["Model Configuration", "Model Link"], 
                                  var_name="Task", value_name="Score")

    plt.figure(figsize=(16, 12))
    for model in df_full["Model Configuration"]:
        model_data = df_full_melted[df_full_melted["Model Configuration"] == model]
        plt.plot(model_data["Task"], model_data["Score"], marker="o", label=model)

    plt.title("Performance of All Models Across Tasks", fontsize=16)
    plt.xlabel("Task", fontsize=14)
    plt.ylabel("Score", fontsize=14)
    plt.xticks(rotation=45)
    plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize=9)
    plt.grid(axis='y', linestyle='--', alpha=0.7)
    plt.tight_layout()
    
    img_buffer = io.BytesIO()
    plt.savefig(img_buffer, format='png')
    img_buffer.seek(0)
    img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
    plt.close()

    pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
    temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
    pil_image.save(temp_image_file.name)
    return pil_image, temp_image_file.name

def plot_task_specific_top_models():
    top_models = df_full.iloc[:, 2:].idxmax()
    top_scores = df_full.iloc[:, 2:].max()
    results = pd.DataFrame({"Top Model": top_models, "Score": top_scores}).reset_index().rename(columns={"index": "Task"})

    plt.figure(figsize=(14, 8))
    plt.bar(results["Task"], results["Score"])
    plt.title("Task-Specific Top Models", fontsize=16)
    plt.xlabel("Task", fontsize=14)
    plt.ylabel("Score", fontsize=14)
    plt.grid(axis="y", linestyle="--", alpha=0.7)
    plt.tight_layout()

    img_buffer = io.BytesIO()
    plt.savefig(img_buffer, format='png')
    img_buffer.seek(0)
    img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
    plt.close()
    pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
    temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
    pil_image.save(temp_image_file.name)
    return pil_image, temp_image_file.name

def plot_heatmap():
    plt.figure(figsize=(14, 10))
    sns.heatmap(df_full.iloc[:, 2:], annot=True, cmap="YlGnBu",
                xticklabels=columns[2:], yticklabels=df_full["Model Configuration"])
    plt.title("Performance Heatmap", fontsize=16)
    plt.tight_layout()
    
    img_buffer = io.BytesIO()
    plt.savefig(img_buffer, format='png')
    img_buffer.seek(0)
    img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
    plt.close()
    pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
    temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
    pil_image.save(temp_image_file.name)
    return pil_image, temp_image_file.name

def scrape_mergekit_config(model_name):
    """
    Example from your code that tries to find <pre> blocks on the model page.
    """
    model_link = df_full.loc[df_full["Model Configuration"] == model_name, "Model Link"].values[0]
    response = requests.get(model_link)
    if response.status_code != 200:
        return f"Failed to fetch model page for {model_name}. Please check the link."

    soup = BeautifulSoup(response.text, "html.parser")
    yaml_config = soup.find("pre")
    if yaml_config:
        return yaml_config.text.strip()
    return f"No YAML configuration found for {model_name}."

def download_yaml(yaml_content, model_name):
    if "No YAML configuration found" in yaml_content or "Failed to fetch model page" in yaml_content:
        return None
    filename = f"{model_name.replace('/', '_')}_config.yaml"
    return gr.File(value=yaml_content.encode(), filename=filename)

def scrape_model_page(model_url):
    try:
        response = requests.get(model_url)
        if response.status_code != 200:
            return f"Error: Unable to fetch the page (Status Code: {response.status_code})"
        
        soup = BeautifulSoup(response.text, "html.parser")
        yaml_config = soup.find("pre")
        yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found."
        metadata_section = soup.find("div", class_="metadata")
        metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found."
        return f"**YAML Configuration:**\n{yaml_text}\n\n**Metadata:**\n{metadata_text}"
    except Exception as e:
        return f"Error: {str(e)}"

def display_scraped_model_data(model_url):
    return scrape_model_page(model_url)

def download_all_data():
    import io
    csv_buffer = io.StringIO()
    df_full.to_csv(csv_buffer, index=False)
    csv_data = csv_buffer.getvalue().encode('utf-8')
    
    average_plot_pil, average_plot_name = plot_average_scores()
    task_plot_pil, task_plot_name = plot_task_performance()
    top_models_plot_pil, top_models_plot_name = plot_task_specific_top_models()
    heatmap_plot_pil, heatmap_plot_name = plot_heatmap()

    plot_dict = {
        "average_performance": (average_plot_pil, average_plot_name),
        "task_performance": (task_plot_pil, task_plot_name),
        "top_models": (top_models_plot_pil, top_models_plot_name),
        "heatmap": (heatmap_plot_pil, heatmap_plot_name)
    }

    zip_buffer = io.BytesIO()
    with zipfile.ZipFile(zip_buffer, 'w') as zf:
        zf.writestr("model_scores.csv", csv_data)

        for name, (pil_image, filename) in plot_dict.items():
            image_bytes = io.BytesIO()
            pil_image.save(image_bytes, format='PNG')
            image_bytes.seek(0)
            zf.writestr(filename, image_bytes.read())

        # Optionally, scrape each model for a YAML config:
        for model_name in df_full["Model Configuration"].to_list():
            yaml_content = scrape_mergekit_config(model_name)
            if ("No YAML configuration found" not in yaml_content) and ("Failed to fetch model page" not in yaml_content):
                zf.writestr(f"{model_name.replace('/', '_')}_config.yaml", yaml_content.encode())

    zip_buffer.seek(0)
    return zip_buffer, "analysis_data.zip"


#############################################
# PART 2: RUNNING `scrape-leaderboard.py`
#############################################

def run_scrape_leaderboard():
    """
    Uses Python's `subprocess` to call the external script: `scrape-leaderboard.py`
    capturing whatever the script prints to stdout.
    """
    try:
        # Make sure 'scrape-leaderboard.py' is in the same folder or give the full path
        result = subprocess.run(["python", "scrape-leaderboard.py"], capture_output=True, text=True)
        # Return the combined stdout/stderr or just stdout
        return result.stdout if result.stdout else result.stderr
    except Exception as e:
        return f"Error running script: {str(e)}"


###############################
# PART 3: YOUR GRADIO INTERFACE
###############################

with gr.Blocks() as demo:
    gr.Markdown("# Comprehensive Model Performance Analysis with Hugging Face Links")

    with gr.Row():
        btn1 = gr.Button("Show Average Performance")
        img1 = gr.Image(type="pil", label="Average Performance Plot")
        img1_download = gr.File(label="Download Average Performance")
        btn1.click(plot_average_scores, outputs=[img1, img1_download])
        
    with gr.Row():
        btn2 = gr.Button("Show Task Performance")
        img2 = gr.Image(type="pil", label="Task Performance Plot")
        img2_download = gr.File(label="Download Task Performance")
        btn2.click(plot_task_performance, outputs=[img2, img2_download])

    with gr.Row():
        btn3 = gr.Button("Task-Specific Top Models")
        img3 = gr.Image(type="pil", label="Task-Specific Top Models Plot")
        img3_download = gr.File(label="Download Top Models")
        btn3.click(plot_task_specific_top_models, outputs=[img3, img3_download])
    
    with gr.Row():
        btn4 = gr.Button("Plot Performance Heatmap")
        heatmap_img = gr.Image(type="pil", label="Performance Heatmap")
        heatmap_download = gr.File(label="Download Heatmap")
        btn4.click(plot_heatmap, outputs=[heatmap_img, heatmap_download])

    # Drop-down to pick a model, scrape for config
    with gr.Row():
        model_selector = gr.Dropdown(choices=df_full["Model Configuration"].tolist(), label="Select a Model")
        with gr.Column():
            scrape_btn = gr.Button("Scrape MergeKit Configuration")
            yaml_output = gr.Textbox(lines=10, placeholder="YAML Configuration will appear here.")
            scrape_btn.click(scrape_mergekit_config, inputs=model_selector, outputs=yaml_output)
        with gr.Column():
            save_yaml_btn = gr.Button("Save MergeKit Configuration")
            yaml_download = gr.File(label="Download MergeKit Configuration")
            save_yaml_btn.click(download_yaml, inputs=[yaml_output, model_selector], outputs=yaml_download)

    # Button to download everything (CSV + plots)
    with gr.Row():
        download_all_btn = gr.Button("Download Everything")
        all_downloads = gr.File(label="Download All Data")
        download_all_btn.click(download_all_data, outputs=all_downloads)

    # Live scraping of any model URL
    gr.Markdown("## Live Scraping Features")
    with gr.Row():
        url_input = gr.Textbox(label="Enter Hugging Face Model URL", placeholder="https://huggingface.co/<model>")
        live_scrape_btn = gr.Button("Scrape Model Page")
        live_scrape_output = gr.Textbox(label="Scraped Data", lines=15)
        live_scrape_btn.click(display_scraped_model_data, inputs=url_input, outputs=live_scrape_output)

    # NEW: Button that runs the external script 'scrape-leaderboard.py'
    gr.Markdown("## Run `scrape-leaderboard.py` Externally")
    with gr.Row():
        run_script_btn = gr.Button("Run 'scrape-leaderboard.py'")
        run_script_output = gr.Textbox(label="Script Output", lines=25)
        run_script_btn.click(fn=run_scrape_leaderboard, outputs=run_script_output)

# Finally, launch the app
demo.launch()