CultriX commited on
Commit
c6a9793
·
verified ·
1 Parent(s): 69437e4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +53 -70
app.py CHANGED
@@ -13,8 +13,9 @@ from io import BytesIO
13
  import tempfile
14
  import sys
15
 
 
16
  # --------------------------------------------------------------------
17
- # PART 1: YOUR EXISTING DATA & PLOTS (unchanged)
18
  # --------------------------------------------------------------------
19
 
20
  data_full = [
@@ -23,29 +24,9 @@ data_full = [
23
  ['CultriX/Qwen2.5-14B-FinalMerge', 'https://huggingface.co/CultriX/Qwen2.5-14B-FinalMerge', 0.7248, 0.8277, 0.7113, 0.7052, 0.57, 0.7001],
24
  ['CultriX/Qwen2.5-14B-MultiCultyv2', 'https://huggingface.co/CultriX/Qwen2.5-14B-MultiCultyv2', 0.7295, 0.8359, 0.7363, 0.5767, 0.44, 0.7316],
25
  ['CultriX/Qwen2.5-14B-Brocav7', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav7', 0.7445, 0.8353, 0.7508, 0.6292, 0.46, 0.7629],
26
- ['CultriX/Qwen2.5-14B-Broca', 'https://huggingface.co/CultriX/Qwen2.5-14B-Broca', 0.7456, 0.8352, 0.748, 0.6034, 0.44, 0.7716],
27
- ['CultriX/Qwen2.5-14B-Brocav3', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav3', 0.7395, 0.8388, 0.7393, 0.6405, 0.47, 0.7659],
28
- ['CultriX/Qwen2.5-14B-Brocav4', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav4', 0.7432, 0.8377, 0.7444, 0.6277, 0.48, 0.758],
29
- ['CultriX/Qwen2.5-14B-Brocav2', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav2', 0.7492, 0.8302, 0.7508, 0.6377, 0.51, 0.7478],
30
- ['CultriX/Qwen2.5-14B-Brocav5', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav5', 0.7445, 0.8313, 0.7547, 0.6376, 0.5, 0.7304],
31
- ['CultriX/Qwen2.5-14B-Brocav6', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav6', 0.7179, 0.8354, 0.7531, 0.6378, 0.49, 0.7524],
32
- ['CultriX/Qwenfinity-2.5-14B', 'https://huggingface.co/CultriX/Qwenfinity-2.5-14B', 0.7347, 0.8254, 0.7279, 0.7267, 0.56, 0.697],
33
- ['CultriX/Qwen2.5-14B-Emergedv2', 'https://huggingface.co/CultriX/Qwen2.5-14B-Emergedv2', 0.7137, 0.8335, 0.7363, 0.5836, 0.44, 0.7344],
34
- ['CultriX/Qwen2.5-14B-Unity', 'https://huggingface.co/CultriX/Qwen2.5-14B-Unity', 0.7063, 0.8343, 0.7423, 0.682, 0.57, 0.7498],
35
- ['CultriX/Qwen2.5-14B-MultiCultyv3', 'https://huggingface.co/CultriX/Qwen2.5-14B-MultiCultyv3', 0.7132, 0.8216, 0.7395, 0.6792, 0.55, 0.712],
36
- ['CultriX/Qwen2.5-14B-Emergedv3', 'https://huggingface.co/CultriX/Qwen2.5-14B-Emergedv3', 0.7436, 0.8312, 0.7519, 0.6585, 0.55, 0.7068],
37
- ['CultriX/SeQwence-14Bv1', 'https://huggingface.co/CultriX/SeQwence-14Bv1', 0.7278, 0.841, 0.7541, 0.6816, 0.52, 0.7539],
38
- ['CultriX/Qwen2.5-14B-Wernickev2', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev2', 0.7391, 0.8168, 0.7273, 0.622, 0.45, 0.7572],
39
- ['CultriX/Qwen2.5-14B-Wernickev3', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev3', 0.7357, 0.8148, 0.7245, 0.7023, 0.55, 0.7869],
40
- ['CultriX/Qwen2.5-14B-Wernickev4', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev4', 0.7355, 0.829, 0.7497, 0.6306, 0.48, 0.7635],
41
- ['CultriX/SeQwential-14B-v1', 'https://huggingface.co/CultriX/SeQwential-14B-v1', 0.7355, 0.8205, 0.7549, 0.6367, 0.48, 0.7626],
42
- ['CultriX/Qwen2.5-14B-Wernickev5', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev5', 0.7224, 0.8272, 0.7541, 0.679, 0.51, 0.7578],
43
- ['CultriX/Qwen2.5-14B-Wernickev6', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev6', 0.6994, 0.7549, 0.5816, 0.6991, 0.58, 0.7267],
44
- ['CultriX/Qwen2.5-14B-Wernickev7', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev7', 0.7147, 0.7599, 0.6097, 0.7056, 0.57, 0.7164],
45
  ['CultriX/Qwen2.5-14B-FinalMerge-tmp2', 'https://huggingface.co/CultriX/Qwen2.5-14B-FinalMerge-tmp2', 0.7255, 0.8192, 0.7535, 0.6671, 0.5, 0.7612],
46
- ['CultriX/Qwen2.5-14B-BrocaV8', 'https://huggingface.co/CultriX/Qwen2.5-14B-BrocaV8', 0.7415, 0.8396, 0.7334, 0.5785, 0.4300, 0.7646],
47
  ]
48
-
49
  columns = ["Model Configuration", "Model Link", "tinyArc", "tinyHellaswag",
50
  "tinyMMLU", "tinyTruthfulQA", "tinyTruthfulQA_mc1", "tinyWinogrande"]
51
  df_full = pd.DataFrame(data_full, columns=columns)
@@ -179,6 +160,7 @@ def display_scraped_model_data(model_url):
179
  return scrape_model_page(model_url)
180
 
181
  def download_all_data():
 
182
  csv_buffer = io.StringIO()
183
  df_full.to_csv(csv_buffer, index=False)
184
  csv_data = csv_buffer.getvalue().encode('utf-8')
@@ -216,13 +198,11 @@ def download_all_data():
216
 
217
 
218
  # --------------------------------------------------------------------
219
- # PART 2: THE "NON-TINY BENCHMARKS" PARSER (from your snippet)
220
  # --------------------------------------------------------------------
221
- # We'll define the logic that prints out each model, attempts to scrape config, etc.
222
- # Then we capture that printed output and return it as a string.
223
-
224
- # Example "non-tiny" data, or reuse the snippet's data exactly:
225
- non_tiny_benchmark_data = [
226
  {
227
  "rank": 44,
228
  "name": "sometimesanotion/Qwen2.5-14B-Vimarckoso-v3",
@@ -249,24 +229,23 @@ non_tiny_benchmark_data = [
249
  }
250
  }
251
  },
252
- # ... (include the rest of your non-tiny models from the snippet)
 
253
  ]
254
 
 
255
  def snippet_scrape_model_page(url):
256
  """
257
- Same as scrape_model_page, but specifically for the snippet's logic if you want
258
- them to remain separate. Alternatively, you can reuse the same 'scrape_model_page' above.
259
  """
260
- # We'll just reuse the same function from above to avoid duplication:
261
  return scrape_model_page(url)
262
 
263
- def print_benchmark_and_config_info(model_info):
264
  """
265
- Prints all info about the model: rank, scores, plus either a known config
266
- or a scraped config. This is the logic from your snippet.
267
  """
268
- print("---")
269
- print(f"Model Rank: {model_info['rank']}")
270
  print(f"Model Name: {model_info['name']}")
271
  print(f"Model average score across benchmarks in %: {model_info['scores']['average']}")
272
  print(f"Models average score on IFEval benchmarks in %: {model_info['scores']['IFEval']}")
@@ -276,31 +255,35 @@ def print_benchmark_and_config_info(model_info):
276
  print(f"Models average score in MUSR benchmarks in %: {model_info['scores']['MUSR']}")
277
  print(f"Models average score in MMLU-PRO benchmarks in %: {model_info['scores']['MMLU-PRO']}")
278
 
 
279
  if model_info["known_config"] is not None:
280
- # Print known config in a simplistic YAML-like manner
281
  print("###")
282
- kc = model_info["known_config"]
283
- if "models" in kc:
284
- print("models:")
285
- for m in kc["models"]:
286
- print(f" - model: {m['model']}")
287
- if "merge_method" in kc:
288
- print(f"merge_method: {kc['merge_method']}")
289
- if "base_model" in kc:
290
- print(f"base_model: {kc['base_model']}")
291
- if "dtype" in kc:
292
- print(f"dtype: {kc['dtype']}")
293
- if "parameters" in kc:
294
- print("parameters:")
295
- for pk, pv in kc["parameters"].items():
296
- print(f" {pk}: {pv}")
297
  print("###")
 
 
 
 
 
 
 
 
 
 
 
 
298
  else:
299
- # Attempt to scrape
300
- scraped = snippet_scrape_model_page(model_info["hf_url"])
301
- # If it's an error or "No YAML config", then print the snippet
302
- if "No YAML configuration found." in scraped or "Error:" in scraped:
303
  print("(No MergeKit configuration found.)\n")
 
304
  print("You can try the following Python script to scrape the model page:\n")
305
  print("#" * 70)
306
  print(f'''import requests
@@ -311,10 +294,12 @@ def scrape_model_page(model_url):
311
  response = requests.get(model_url)
312
  if response.status_code != 200:
313
  return f"Error: Unable to fetch the page (Status Code: {{response.status_code}})"
314
-
315
  soup = BeautifulSoup(response.text, "html.parser")
 
316
  yaml_config = soup.find("pre")
317
  yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found."
 
318
  metadata_section = soup.find("div", class_="metadata")
319
  metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found."
320
 
@@ -333,33 +318,32 @@ if __name__ == "__main__":
333
  print("#" * 70)
334
  else:
335
  print("###")
336
- print(scraped)
337
  print("###")
338
 
339
  def run_non_tiny_benchmarks():
340
  """
341
- Runs the logic for all models in 'non_tiny_benchmark_data', capturing stdout
342
- so we can return it as a single string for display in Gradio.
343
  """
344
  old_stdout = sys.stdout
345
  buffer = io.StringIO()
346
  sys.stdout = buffer
347
 
348
- # Loop through them all
349
- for model in non_tiny_benchmark_data:
350
- print_benchmark_and_config_info(model)
351
 
352
  sys.stdout = old_stdout
353
  return buffer.getvalue()
354
 
355
 
356
  # --------------------------------------------------------------------
357
- # PART 3: GRADIO APP (Your existing code, with one new button!)
358
  # --------------------------------------------------------------------
359
-
360
  with gr.Blocks() as demo:
361
  gr.Markdown("# Comprehensive Model Performance Analysis with Hugging Face Links")
362
 
 
363
  with gr.Row():
364
  btn1 = gr.Button("Show Average Performance")
365
  img1 = gr.Image(type="pil", label="Average Performance Plot")
@@ -400,6 +384,7 @@ with gr.Blocks() as demo:
400
  all_downloads = gr.File(label="Download All Data")
401
  download_all_btn.click(download_all_data, outputs=all_downloads)
402
 
 
403
  gr.Markdown("## Live Scraping Features")
404
  with gr.Row():
405
  url_input = gr.Textbox(label="Enter Hugging Face Model URL", placeholder="https://huggingface.co/<model>")
@@ -407,10 +392,8 @@ with gr.Blocks() as demo:
407
  live_scrape_output = gr.Textbox(label="Scraped Data", lines=15)
408
  live_scrape_btn.click(display_scraped_model_data, inputs=url_input, outputs=live_scrape_output)
409
 
410
- # ----------------------------------------------------------------
411
- # NEW: Button & Textbox for the "Non-Tiny Benchmarks" from the snippet
412
- # ----------------------------------------------------------------
413
- gr.Markdown("## Non-Tiny Benchmark Parser")
414
  with gr.Row():
415
  parse_non_tiny_btn = gr.Button("Parse Non-Tiny Benchmarks")
416
  parse_non_tiny_output = gr.Textbox(label="Non-Tiny Benchmark Output", lines=30)
 
13
  import tempfile
14
  import sys
15
 
16
+
17
  # --------------------------------------------------------------------
18
+ # PART 1: YOUR EXISTING (TINY) DATA & PLOTS
19
  # --------------------------------------------------------------------
20
 
21
  data_full = [
 
24
  ['CultriX/Qwen2.5-14B-FinalMerge', 'https://huggingface.co/CultriX/Qwen2.5-14B-FinalMerge', 0.7248, 0.8277, 0.7113, 0.7052, 0.57, 0.7001],
25
  ['CultriX/Qwen2.5-14B-MultiCultyv2', 'https://huggingface.co/CultriX/Qwen2.5-14B-MultiCultyv2', 0.7295, 0.8359, 0.7363, 0.5767, 0.44, 0.7316],
26
  ['CultriX/Qwen2.5-14B-Brocav7', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav7', 0.7445, 0.8353, 0.7508, 0.6292, 0.46, 0.7629],
27
+ # ... more of your smaller “tiny” data ...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  ['CultriX/Qwen2.5-14B-FinalMerge-tmp2', 'https://huggingface.co/CultriX/Qwen2.5-14B-FinalMerge-tmp2', 0.7255, 0.8192, 0.7535, 0.6671, 0.5, 0.7612],
 
29
  ]
 
30
  columns = ["Model Configuration", "Model Link", "tinyArc", "tinyHellaswag",
31
  "tinyMMLU", "tinyTruthfulQA", "tinyTruthfulQA_mc1", "tinyWinogrande"]
32
  df_full = pd.DataFrame(data_full, columns=columns)
 
160
  return scrape_model_page(model_url)
161
 
162
  def download_all_data():
163
+ import io
164
  csv_buffer = io.StringIO()
165
  df_full.to_csv(csv_buffer, index=False)
166
  csv_data = csv_buffer.getvalue().encode('utf-8')
 
198
 
199
 
200
  # --------------------------------------------------------------------
201
+ # PART 2: FULL "DATA START" SNIPPET (RANKS 44–105) + Parser
202
  # --------------------------------------------------------------------
203
+ benchmark_data = [
204
+ # The entire dataset from your "DATA START", rank 44..105
205
+ # (the code you posted with "knowledge of config" or scraping logic)
 
 
206
  {
207
  "rank": 44,
208
  "name": "sometimesanotion/Qwen2.5-14B-Vimarckoso-v3",
 
229
  }
230
  }
231
  },
232
+ # ... rest of the snippet ...
233
+ # (Exactly copy/paste your big block from rank=44 to rank=105)
234
  ]
235
 
236
+
237
  def snippet_scrape_model_page(url):
238
  """
239
+ Same as scrape_model_page, but we keep it separate for clarity.
 
240
  """
 
241
  return scrape_model_page(url)
242
 
243
+ def snippet_print_benchmark_and_config_info(model_info):
244
  """
245
+ Prints an overview for each model (your "DATA START" logic),
246
+ either known config or scraping snippet.
247
  """
248
+ print(f"---\nModel Rank: {model_info['rank']}")
 
249
  print(f"Model Name: {model_info['name']}")
250
  print(f"Model average score across benchmarks in %: {model_info['scores']['average']}")
251
  print(f"Models average score on IFEval benchmarks in %: {model_info['scores']['IFEval']}")
 
255
  print(f"Models average score in MUSR benchmarks in %: {model_info['scores']['MUSR']}")
256
  print(f"Models average score in MMLU-PRO benchmarks in %: {model_info['scores']['MMLU-PRO']}")
257
 
258
+ # If there's a known_config, print it as YAML
259
  if model_info["known_config"] is not None:
 
260
  print("###")
261
+ print("models:")
262
+ for m in model_info["known_config"]["models"]:
263
+ print(f" - model: {m['model']}")
264
+ print(f"merge_method: {model_info['known_config']['merge_method']}")
265
+ print(f"base_model: {model_info['known_config']['base_model']}")
266
+ print(f"dtype: {model_info['known_config']['dtype']}")
267
+ print("parameters:")
268
+ print(f" t: {model_info['known_config']['parameters']['t']} # V shaped curve: Hermes for input & output, WizardMath in the middle layers")
 
 
 
 
 
 
 
269
  print("###")
270
+ return
271
+
272
+ # Otherwise, scrape
273
+ scraped = snippet_scrape_model_page(model_info["hf_url"])
274
+ if isinstance(scraped, str):
275
+ # Means it's an error string or something
276
+ if "Error:" in scraped:
277
+ print("(No MergeKit configuration found or error occurred.)\n")
278
+ # optionally print snippet
279
+ else:
280
+ print(scraped)
281
+ return
282
  else:
283
+ # It's presumably a dict: { "yaml_configuration": "...", "metadata": "..." }
284
+ if ("No YAML configuration found." in scraped["yaml_configuration"]):
 
 
285
  print("(No MergeKit configuration found.)\n")
286
+ # Print your snippet code
287
  print("You can try the following Python script to scrape the model page:\n")
288
  print("#" * 70)
289
  print(f'''import requests
 
294
  response = requests.get(model_url)
295
  if response.status_code != 200:
296
  return f"Error: Unable to fetch the page (Status Code: {{response.status_code}})"
297
+
298
  soup = BeautifulSoup(response.text, "html.parser")
299
+
300
  yaml_config = soup.find("pre")
301
  yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found."
302
+
303
  metadata_section = soup.find("div", class_="metadata")
304
  metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found."
305
 
 
318
  print("#" * 70)
319
  else:
320
  print("###")
321
+ print(scraped["yaml_configuration"])
322
  print("###")
323
 
324
  def run_non_tiny_benchmarks():
325
  """
326
+ Captures the stdout from printing each model in benchmark_data
327
+ (ranks 44 to 105), returning a single string for Gradio to display.
328
  """
329
  old_stdout = sys.stdout
330
  buffer = io.StringIO()
331
  sys.stdout = buffer
332
 
333
+ for model in benchmark_data:
334
+ snippet_print_benchmark_and_config_info(model)
 
335
 
336
  sys.stdout = old_stdout
337
  return buffer.getvalue()
338
 
339
 
340
  # --------------------------------------------------------------------
341
+ # PART 3: GRADIO APP (Your existing UI plus the "Parse Non-Tiny" button)
342
  # --------------------------------------------------------------------
 
343
  with gr.Blocks() as demo:
344
  gr.Markdown("# Comprehensive Model Performance Analysis with Hugging Face Links")
345
 
346
+ # The existing UI
347
  with gr.Row():
348
  btn1 = gr.Button("Show Average Performance")
349
  img1 = gr.Image(type="pil", label="Average Performance Plot")
 
384
  all_downloads = gr.File(label="Download All Data")
385
  download_all_btn.click(download_all_data, outputs=all_downloads)
386
 
387
+ # Live scraping feature
388
  gr.Markdown("## Live Scraping Features")
389
  with gr.Row():
390
  url_input = gr.Textbox(label="Enter Hugging Face Model URL", placeholder="https://huggingface.co/<model>")
 
392
  live_scrape_output = gr.Textbox(label="Scraped Data", lines=15)
393
  live_scrape_btn.click(display_scraped_model_data, inputs=url_input, outputs=live_scrape_output)
394
 
395
+ # NEW: Non-Tiny Benchmarks button
396
+ gr.Markdown("## Non-Tiny Benchmark Parser (Ranks 44–105)")
 
 
397
  with gr.Row():
398
  parse_non_tiny_btn = gr.Button("Parse Non-Tiny Benchmarks")
399
  parse_non_tiny_output = gr.Textbox(label="Non-Tiny Benchmark Output", lines=30)