Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,228 @@
|
|
1 |
-
import
|
2 |
-
import
|
|
|
|
|
3 |
import requests
|
4 |
from bs4 import BeautifulSoup
|
5 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
# - name (str)
|
13 |
-
# - scores (dict) with keys: average, IFEval, BBH, MATH, GPQA, MUSR, MMLU-PRO
|
14 |
-
# - known_config (dict if found, or None if no config)
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
{
|
18 |
"rank": 44,
|
19 |
"name": "sometimesanotion/Qwen2.5-14B-Vimarckoso-v3",
|
@@ -26,6 +235,7 @@ benchmark_data = [
|
|
26 |
"MUSR": 19.39,
|
27 |
"MMLU-PRO": 48.26
|
28 |
},
|
|
|
29 |
"known_config": {
|
30 |
"models": [
|
31 |
{"model": "CultriX/SeQwence-14Bv1"},
|
@@ -39,1504 +249,21 @@ benchmark_data = [
|
|
39 |
}
|
40 |
}
|
41 |
},
|
42 |
-
|
43 |
-
"rank": 45,
|
44 |
-
"name": "sthenno-com/miscii-14b-1225",
|
45 |
-
"scores": {
|
46 |
-
"average": 40.08,
|
47 |
-
"IFEval": 78.78,
|
48 |
-
"BBH": 50.91,
|
49 |
-
"MATH": 31.57,
|
50 |
-
"GPQA": 17.00,
|
51 |
-
"MUSR": 14.77,
|
52 |
-
"MMLU-PRO": 47.46
|
53 |
-
},
|
54 |
-
"known_config": {
|
55 |
-
"tokenizer_source": "base",
|
56 |
-
"chat_template": "chatml",
|
57 |
-
"merge_method": "ties",
|
58 |
-
"dtype": "bfloat16",
|
59 |
-
"parameters": {
|
60 |
-
"normalize": True
|
61 |
-
},
|
62 |
-
"base_model": "sthenno-com/miscii-14b-1028",
|
63 |
-
"models": [
|
64 |
-
{
|
65 |
-
"model": "sthenno-com/miscii-14b-1028",
|
66 |
-
"parameters": {
|
67 |
-
"weight": 1,
|
68 |
-
"density": 0.5
|
69 |
-
}
|
70 |
-
},
|
71 |
-
{
|
72 |
-
"model": "sthenno/miscii-1218",
|
73 |
-
"parameters": {
|
74 |
-
"weight": 1,
|
75 |
-
"density": 0.5
|
76 |
-
}
|
77 |
-
},
|
78 |
-
{
|
79 |
-
"model": "sthenno/exp-002",
|
80 |
-
"parameters": {
|
81 |
-
"weight": 0.9,
|
82 |
-
"density": 0.5
|
83 |
-
}
|
84 |
-
},
|
85 |
-
{
|
86 |
-
"model": "sthenno/miscii-1218",
|
87 |
-
"parameters": {
|
88 |
-
"weight": 0.6,
|
89 |
-
"density": 0.5
|
90 |
-
}
|
91 |
-
}
|
92 |
-
]
|
93 |
-
}
|
94 |
-
},
|
95 |
-
{
|
96 |
-
"rank": 46,
|
97 |
-
"name": "djuna/Q2.5-Veltha-14B-0.5",
|
98 |
-
"scores": {
|
99 |
-
"average": 39.96,
|
100 |
-
"IFEval": 77.96,
|
101 |
-
"BBH": 50.32,
|
102 |
-
"MATH": 33.84,
|
103 |
-
"GPQA": 15.77,
|
104 |
-
"MUSR": 14.17,
|
105 |
-
"MMLU-PRO": 47.72
|
106 |
-
},
|
107 |
-
"known_config": {
|
108 |
-
"merge_method": "della_linear",
|
109 |
-
"dtype": "float32",
|
110 |
-
"out_dtype": "bfloat16",
|
111 |
-
"parameters": {
|
112 |
-
"epsilon": 0.04,
|
113 |
-
"lambda": 1.05,
|
114 |
-
"normalize": True
|
115 |
-
},
|
116 |
-
"base_model": "arcee-ai/SuperNova-Medius",
|
117 |
-
"tokenizer_source": "arcee-ai/SuperNova-Medius",
|
118 |
-
"models": [
|
119 |
-
{
|
120 |
-
"model": "arcee-ai/SuperNova-Medius",
|
121 |
-
"parameters": {
|
122 |
-
"weight": 10,
|
123 |
-
"density": 1
|
124 |
-
}
|
125 |
-
},
|
126 |
-
{
|
127 |
-
"model": "EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2",
|
128 |
-
"parameters": {
|
129 |
-
"weight": 7,
|
130 |
-
"density": 0.5
|
131 |
-
}
|
132 |
-
},
|
133 |
-
{
|
134 |
-
"model": "v000000/Qwen2.5-Lumen-14B",
|
135 |
-
"parameters": {
|
136 |
-
"weight": 7,
|
137 |
-
"density": 0.4
|
138 |
-
}
|
139 |
-
},
|
140 |
-
{
|
141 |
-
"model": "allura-org/TQ2.5-14B-Aletheia-v1",
|
142 |
-
"parameters": {
|
143 |
-
"weight": 8,
|
144 |
-
"density": 0.4
|
145 |
-
}
|
146 |
-
},
|
147 |
-
{
|
148 |
-
"model": "huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2",
|
149 |
-
"parameters": {
|
150 |
-
"weight": 8,
|
151 |
-
"density": 0.45
|
152 |
-
}
|
153 |
-
}
|
154 |
-
]
|
155 |
-
}
|
156 |
-
},
|
157 |
-
{
|
158 |
-
"rank": 48,
|
159 |
-
"name": "sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-model_stock",
|
160 |
-
"scores": {
|
161 |
-
"average": 39.81,
|
162 |
-
"IFEval": 71.62,
|
163 |
-
"BBH": 48.76,
|
164 |
-
"MATH": 33.99,
|
165 |
-
"GPQA": 17.34,
|
166 |
-
"MUSR": 19.23,
|
167 |
-
"MMLU-PRO": 47.95
|
168 |
-
},
|
169 |
-
"known_config": None
|
170 |
-
},
|
171 |
-
{
|
172 |
-
"rank": 50,
|
173 |
-
"name": "sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-Prose01",
|
174 |
-
"scores": {
|
175 |
-
"average": 39.46,
|
176 |
-
"IFEval": 68.72,
|
177 |
-
"BBH": 47.71,
|
178 |
-
"MATH": 35.05,
|
179 |
-
"GPQA": 18.23,
|
180 |
-
"MUSR": 19.56,
|
181 |
-
"MMLU-PRO": 47.50
|
182 |
-
},
|
183 |
-
"known_config": None
|
184 |
-
},
|
185 |
-
{
|
186 |
-
"rank": 52,
|
187 |
-
"name": "arcee-ai/Virtuoso-Small",
|
188 |
-
"scores": {
|
189 |
-
"average": 39.43,
|
190 |
-
"IFEval": 79.35,
|
191 |
-
"BBH": 50.40,
|
192 |
-
"MATH": 34.29,
|
193 |
-
"GPQA": 11.52,
|
194 |
-
"MUSR": 14.44,
|
195 |
-
"MMLU-PRO": 46.57
|
196 |
-
},
|
197 |
-
"known_config": None
|
198 |
-
},
|
199 |
-
{
|
200 |
-
"rank": 54,
|
201 |
-
"name": "sometimesanotion/Qwentinuum-14B-v6",
|
202 |
-
"scores": {
|
203 |
-
"average": 39.23,
|
204 |
-
"IFEval": 63.04,
|
205 |
-
"BBH": 50.23,
|
206 |
-
"MATH": 33.84,
|
207 |
-
"GPQA": 18.23,
|
208 |
-
"MUSR": 21.18,
|
209 |
-
"MMLU-PRO": 48.89
|
210 |
-
},
|
211 |
-
"known_config": None
|
212 |
-
},
|
213 |
-
{
|
214 |
-
"rank": 55,
|
215 |
-
"name": "djuna/Q2.5-Veltha-14B",
|
216 |
-
"scores": {
|
217 |
-
"average": 39.21,
|
218 |
-
"IFEval": 82.92,
|
219 |
-
"BBH": 49.75,
|
220 |
-
"MATH": 28.02,
|
221 |
-
"GPQA": 14.54,
|
222 |
-
"MUSR": 12.26,
|
223 |
-
"MMLU-PRO": 47.76
|
224 |
-
},
|
225 |
-
"known_config": {
|
226 |
-
"merge_method": "della_linear",
|
227 |
-
"dtype": "float32",
|
228 |
-
"out_dtype": "bfloat16",
|
229 |
-
"parameters": {
|
230 |
-
"epsilon": 0.04,
|
231 |
-
"lambda": 1.05,
|
232 |
-
"normalize": True
|
233 |
-
},
|
234 |
-
"base_model": "qwen/Qwen2.5-14b",
|
235 |
-
"tokenizer_source": "arcee-ai/SuperNova-Medius",
|
236 |
-
"models": [
|
237 |
-
{
|
238 |
-
"model": "arcee-ai/SuperNova-Medius",
|
239 |
-
"parameters": {
|
240 |
-
"weight": 10,
|
241 |
-
"density": 1
|
242 |
-
}
|
243 |
-
},
|
244 |
-
{
|
245 |
-
"model": "EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2",
|
246 |
-
"parameters": {
|
247 |
-
"weight": 7,
|
248 |
-
"density": 0.5
|
249 |
-
}
|
250 |
-
},
|
251 |
-
{
|
252 |
-
"model": "v000000/Qwen2.5-Lumen-14B",
|
253 |
-
"parameters": {
|
254 |
-
"weight": 7,
|
255 |
-
"density": 0.4
|
256 |
-
}
|
257 |
-
},
|
258 |
-
{
|
259 |
-
"model": "allura-org/TQ2.5-14B-Aletheia-v1",
|
260 |
-
"parameters": {
|
261 |
-
"weight": 8,
|
262 |
-
"density": 0.4
|
263 |
-
}
|
264 |
-
},
|
265 |
-
{
|
266 |
-
"model": "huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2",
|
267 |
-
"parameters": {
|
268 |
-
"weight": 8,
|
269 |
-
"density": 0.45
|
270 |
-
}
|
271 |
-
}
|
272 |
-
]
|
273 |
-
}
|
274 |
-
},
|
275 |
-
{
|
276 |
-
"rank": 57,
|
277 |
-
"name": "allknowingroger/QwenSlerp6-14B",
|
278 |
-
"scores": {
|
279 |
-
"average": 39.02,
|
280 |
-
"IFEval": 68.67,
|
281 |
-
"BBH": 47.59,
|
282 |
-
"MATH": 34.14,
|
283 |
-
"GPQA": 16.44,
|
284 |
-
"MUSR": 18.32,
|
285 |
-
"MMLU-PRO": 48.95
|
286 |
-
},
|
287 |
-
"known_config": {
|
288 |
-
"models": [
|
289 |
-
{"model": "CultriX/SeQwence-14Bv1"},
|
290 |
-
{"model": "allknowingroger/Qwenslerp2-14B"}
|
291 |
-
],
|
292 |
-
"merge_method": "slerp",
|
293 |
-
"base_model": "CultriX/SeQwence-14Bv1",
|
294 |
-
"dtype": "bfloat16",
|
295 |
-
"parameters": {
|
296 |
-
"t": [0, 0.5, 1, 0.5, 0]
|
297 |
-
}
|
298 |
-
}
|
299 |
-
},
|
300 |
-
{
|
301 |
-
"rank": 58,
|
302 |
-
"name": "allknowingroger/QwenSlerp5-14B",
|
303 |
-
"scores": {
|
304 |
-
"average": 38.94,
|
305 |
-
"IFEval": 71.19,
|
306 |
-
"BBH": 47.39,
|
307 |
-
"MATH": 33.16,
|
308 |
-
"GPQA": 15.32,
|
309 |
-
"MUSR": 17.81,
|
310 |
-
"MMLU-PRO": 48.78
|
311 |
-
},
|
312 |
-
"known_config": {
|
313 |
-
"models": [
|
314 |
-
{"model": "CultriX/SeQwence-14Bv1"},
|
315 |
-
{"model": "CultriX/Qwestion-14B"}
|
316 |
-
],
|
317 |
-
"merge_method": "slerp",
|
318 |
-
"base_model": "CultriX/SeQwence-14Bv1",
|
319 |
-
"dtype": "bfloat16",
|
320 |
-
"parameters": {
|
321 |
-
"t": [0, 0.5, 1, 0.5, 0]
|
322 |
-
}
|
323 |
-
}
|
324 |
-
},
|
325 |
-
{
|
326 |
-
"rank": 59,
|
327 |
-
"name": "sometimesanotion/Qwentinuum-14B-v5",
|
328 |
-
"scores": {
|
329 |
-
"average": 38.87,
|
330 |
-
"IFEval": 62.86,
|
331 |
-
"BBH": 50.28,
|
332 |
-
"MATH": 31.57,
|
333 |
-
"GPQA": 18.34,
|
334 |
-
"MUSR": 21.09,
|
335 |
-
"MMLU-PRO": 49.09
|
336 |
-
},
|
337 |
-
"known_config": None
|
338 |
-
},
|
339 |
-
{
|
340 |
-
"rank": 60,
|
341 |
-
"name": "sometimesanotion/Qwenvergence-14B-v6-Prose",
|
342 |
-
"scores": {
|
343 |
-
"average": 38.82,
|
344 |
-
"IFEval": 59.90,
|
345 |
-
"BBH": 50.12,
|
346 |
-
"MATH": 34.89,
|
347 |
-
"GPQA": 18.46,
|
348 |
-
"MUSR": 21.02,
|
349 |
-
"MMLU-PRO": 48.56
|
350 |
-
},
|
351 |
-
"known_config": {
|
352 |
-
# This model had two YAML segments:
|
353 |
-
# We'll store them in a single dictionary with keys "config1" and "config2" to preserve them:
|
354 |
-
"config1": {
|
355 |
-
"name": "Qwenvergence-14B-v6-Prose-model_stock",
|
356 |
-
"merge_method": "model_stock",
|
357 |
-
"base_model": "Qwen/Qwen2.5-14B",
|
358 |
-
"tokenizer_source": "huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2",
|
359 |
-
"parameters": {
|
360 |
-
"int8_mask": True,
|
361 |
-
"normalize": True,
|
362 |
-
"rescale": False
|
363 |
-
},
|
364 |
-
"models": [
|
365 |
-
"arcee-ai/Virtuoso-Small",
|
366 |
-
"sometimesanotion/Lamarck-14B-v0.3",
|
367 |
-
"EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2",
|
368 |
-
"allura-org/TQ2.5-14B-Sugarquill-v1",
|
369 |
-
"oxyapi/oxy-1-small",
|
370 |
-
"v000000/Qwen2.5-Lumen-14B",
|
371 |
-
"sthenno-com/miscii-14b-1225",
|
372 |
-
"sthenno-com/miscii-14b-1225",
|
373 |
-
"underwoods/medius-erebus-magnum-14b",
|
374 |
-
"huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2"
|
375 |
-
],
|
376 |
-
"dtype": "float32",
|
377 |
-
"out_dtype": "bfloat16"
|
378 |
-
},
|
379 |
-
"config2": {
|
380 |
-
"name": "Qwenvergence-14B-v6-Prose",
|
381 |
-
"merge_method": "ties",
|
382 |
-
"base_model": "Qwen/Qwen2.5-14B",
|
383 |
-
"tokenizer_source": "base",
|
384 |
-
"parameters": {
|
385 |
-
"density": 1.00,
|
386 |
-
"weight": 1.00,
|
387 |
-
"int8_mask": True,
|
388 |
-
"normalize": True,
|
389 |
-
"rescale": False
|
390 |
-
},
|
391 |
-
"dtype": "float32",
|
392 |
-
"out_dtype": "bfloat16",
|
393 |
-
"models": [
|
394 |
-
{
|
395 |
-
"model": "sometimesanotion/Qwenvergence-14B-v6-Prose-slerp",
|
396 |
-
"parameters": {
|
397 |
-
"density": 1.00,
|
398 |
-
"weight": 1.00
|
399 |
-
}
|
400 |
-
}
|
401 |
-
]
|
402 |
-
}
|
403 |
-
}
|
404 |
-
},
|
405 |
-
{
|
406 |
-
"rank": 61,
|
407 |
-
"name": "CultriX/Qwen2.5-14B-Brocav3",
|
408 |
-
"scores": {
|
409 |
-
"average": 38.76,
|
410 |
-
"IFEval": 69.52,
|
411 |
-
"BBH": 49.05,
|
412 |
-
"MATH": 32.25,
|
413 |
-
"GPQA": 14.54,
|
414 |
-
"MUSR": 19.25,
|
415 |
-
"MMLU-PRO": 47.97
|
416 |
-
},
|
417 |
-
"known_config": {
|
418 |
-
"merge_method": "della_linear",
|
419 |
-
"base_model": "CultriX/Qwen2.5-14B-Wernickev3",
|
420 |
-
"dtype": "bfloat16",
|
421 |
-
"parameters": {
|
422 |
-
"epsilon": 0.012,
|
423 |
-
"lambda": 1.4,
|
424 |
-
"normalize": True
|
425 |
-
},
|
426 |
-
"adaptive_merge_parameters": {
|
427 |
-
"task_weights": {
|
428 |
-
"tinyArc": 1.6,
|
429 |
-
"tinyHellaswag": 1.5,
|
430 |
-
"tinyMMLU": 1.65,
|
431 |
-
"tinyTruthfulQA": 1.9,
|
432 |
-
"tinyTruthfulQA_mc1": 1.7,
|
433 |
-
"tinyWinogrande": 1.75,
|
434 |
-
"IFEval": 1.9,
|
435 |
-
"BBH": 1.7,
|
436 |
-
"MATH": 2.1,
|
437 |
-
"GPQA": 1.8,
|
438 |
-
"MUSR": 1.9,
|
439 |
-
"MMLU-PRO": 1.8
|
440 |
-
},
|
441 |
-
"smoothing_factor": 0.1
|
442 |
-
},
|
443 |
-
"gradient_clipping": {
|
444 |
-
"CultriX/Qwen2.5-14B-Wernickev3": 0.86,
|
445 |
-
"CultriX/Qwenfinity-2.5-14B": 0.83,
|
446 |
-
"djuna/Q2.5-Veltha-14B-0.5": 0.91,
|
447 |
-
"CultriX/Qwen2.5-14B-Broca": 0.85,
|
448 |
-
"qingy2019/Qwen2.5-Math-14B-Instruct": 0.93,
|
449 |
-
"CultriX/SeQwence-14Bv1": 0.88,
|
450 |
-
"sometimesanotion/Qwen2.5-14B-Vimarckoso": 0.89,
|
451 |
-
"allknowingroger/QwenSlerp6-14B": 0.87
|
452 |
-
},
|
453 |
-
"models": [
|
454 |
-
{
|
455 |
-
"model": "CultriX/Qwen2.5-14B-Wernickev3",
|
456 |
-
"parameters": {
|
457 |
-
"weight": 0.26,
|
458 |
-
"density": 0.7
|
459 |
-
}
|
460 |
-
},
|
461 |
-
{
|
462 |
-
"model": "CultriX/Qwenfinity-2.5-14B",
|
463 |
-
"parameters": {
|
464 |
-
"weight": 0.23,
|
465 |
-
"density": 0.65
|
466 |
-
}
|
467 |
-
},
|
468 |
-
{
|
469 |
-
"model": "djuna/Q2.5-Veltha-14B-0.5",
|
470 |
-
"parameters": {
|
471 |
-
"weight": 0.22,
|
472 |
-
"density": 0.72
|
473 |
-
}
|
474 |
-
},
|
475 |
-
{
|
476 |
-
"model": "CultriX/Qwen2.5-14B-Broca",
|
477 |
-
"parameters": {
|
478 |
-
"weight": 0.15,
|
479 |
-
"density": 0.65
|
480 |
-
}
|
481 |
-
},
|
482 |
-
{
|
483 |
-
"model": "qingy2019/Qwen2.5-Math-14B-Instruct",
|
484 |
-
"parameters": {
|
485 |
-
"weight": 0.18,
|
486 |
-
"density": 0.73
|
487 |
-
}
|
488 |
-
},
|
489 |
-
{
|
490 |
-
"model": "CultriX/SeQwence-14Bv1",
|
491 |
-
"parameters": {
|
492 |
-
"weight": 0.14,
|
493 |
-
"density": 0.63
|
494 |
-
}
|
495 |
-
},
|
496 |
-
{
|
497 |
-
"model": "sometimesanotion/Qwen2.5-14B-Vimarckoso",
|
498 |
-
"parameters": {
|
499 |
-
"weight": 0.12,
|
500 |
-
"density": 0.6
|
501 |
-
}
|
502 |
-
},
|
503 |
-
{
|
504 |
-
"model": "allknowingroger/QwenSlerp6-14B",
|
505 |
-
"parameters": {
|
506 |
-
"weight": 0.1,
|
507 |
-
"density": 0.62
|
508 |
-
}
|
509 |
-
}
|
510 |
-
],
|
511 |
-
"tokenizer_source": "CultriX/Qwen2.5-14B-Wernickev3"
|
512 |
-
}
|
513 |
-
},
|
514 |
-
{
|
515 |
-
"rank": 62,
|
516 |
-
"name": "sometimesanotion/Qwentinuum-14B-v7",
|
517 |
-
"scores": {
|
518 |
-
"average": 38.76,
|
519 |
-
"IFEval": 61.09,
|
520 |
-
"BBH": 50.35,
|
521 |
-
"MATH": 33.38,
|
522 |
-
"GPQA": 18.79,
|
523 |
-
"MUSR": 19.95,
|
524 |
-
"MMLU-PRO": 49.00
|
525 |
-
},
|
526 |
-
"known_config": None
|
527 |
-
},
|
528 |
-
{
|
529 |
-
"rank": 64,
|
530 |
-
"name": "sometimesanotion/Qwentinuum-14B-v3",
|
531 |
-
"scores": {
|
532 |
-
"average": 38.74,
|
533 |
-
"IFEval": 61.58,
|
534 |
-
"BBH": 50.04,
|
535 |
-
"MATH": 32.85,
|
536 |
-
"GPQA": 18.34,
|
537 |
-
"MUSR": 20.62,
|
538 |
-
"MMLU-PRO": 49.03
|
539 |
-
},
|
540 |
-
"known_config": None
|
541 |
-
},
|
542 |
-
{
|
543 |
-
"rank": 65,
|
544 |
-
"name": "allura-org/TQ2.5-14B-Aletheia-v1",
|
545 |
-
"scores": {
|
546 |
-
"average": 38.74,
|
547 |
-
"IFEval": 75.30,
|
548 |
-
"BBH": 50.88,
|
549 |
-
"MATH": 29.53,
|
550 |
-
"GPQA": 14.99,
|
551 |
-
"MUSR": 14.61,
|
552 |
-
"MMLU-PRO": 47.12
|
553 |
-
},
|
554 |
-
# The snippet had:
|
555 |
-
# <|im_start|>system
|
556 |
-
# ...
|
557 |
-
# This was presumably some leftover system text. We'll treat it as config, or None.
|
558 |
-
# We'll store it as a minimal known_config example:
|
559 |
-
"known_config": {
|
560 |
-
"system_text_example": "<|im_start|>system ... <|im_end|>"
|
561 |
-
}
|
562 |
-
},
|
563 |
-
{
|
564 |
-
"rank": 66,
|
565 |
-
"name": "qingy2024/Fusion4-14B-Instruct",
|
566 |
-
"scores": {
|
567 |
-
"average": 38.73,
|
568 |
-
"IFEval": 76.49,
|
569 |
-
"BBH": 50.70,
|
570 |
-
"MATH": 33.91,
|
571 |
-
"GPQA": 10.74,
|
572 |
-
"MUSR": 13.97,
|
573 |
-
"MMLU-PRO": 46.60
|
574 |
-
},
|
575 |
-
"known_config": {
|
576 |
-
"models": [
|
577 |
-
{
|
578 |
-
"model": "arcee-ai/Virtuoso-Small",
|
579 |
-
"parameters": {
|
580 |
-
"weight": 1,
|
581 |
-
"density": 1
|
582 |
-
}
|
583 |
-
}
|
584 |
-
],
|
585 |
-
"merge_method": "ties",
|
586 |
-
"base_model": "Qwen/Qwen2.5-14B",
|
587 |
-
"parameters": {
|
588 |
-
"weight": 1,
|
589 |
-
"density": 1,
|
590 |
-
"normalize": True,
|
591 |
-
"int8_mask": True
|
592 |
-
},
|
593 |
-
"dtype": "float16"
|
594 |
-
}
|
595 |
-
},
|
596 |
-
{
|
597 |
-
"rank": 68,
|
598 |
-
"name": "CultriX/Qwen2.5-14B-Brocav7",
|
599 |
-
"scores": {
|
600 |
-
"average": 38.52,
|
601 |
-
"IFEval": 67.24,
|
602 |
-
"BBH": 48.91,
|
603 |
-
"MATH": 31.87,
|
604 |
-
"GPQA": 15.66,
|
605 |
-
"MUSR": 20.15,
|
606 |
-
"MMLU-PRO": 47.31
|
607 |
-
},
|
608 |
-
"known_config": {
|
609 |
-
"merge_method": "della_linear",
|
610 |
-
"base_model": "CultriX/Qwen2.5-14B-Wernickev3",
|
611 |
-
"dtype": "bfloat16",
|
612 |
-
"parameters": {
|
613 |
-
"epsilon": 0.01,
|
614 |
-
"lambda": 1.5,
|
615 |
-
"normalize": True,
|
616 |
-
"smoothing_factor": 0.08
|
617 |
-
},
|
618 |
-
"gradient_clipping": {
|
619 |
-
"CultriX/Qwen2.5-14B-Wernickev3": 0.85,
|
620 |
-
"CultriX/Qwenfinity-2.5-14B": 0.82,
|
621 |
-
"djuna/Q2.5-Veltha-14B-0.5": 0.92,
|
622 |
-
"CultriX/Qwen2.5-14B-Broca": 0.86,
|
623 |
-
"qingy2019/Qwen2.5-Math-14B-Instruct": 0.94,
|
624 |
-
"CultriX/SeQwence-14Bv1": 0.87,
|
625 |
-
"sometimesanotion/Qwen2.5-14B-Vimarckoso": 0.90,
|
626 |
-
"allknowingroger/QwenSlerp6-14B": 0.86
|
627 |
-
},
|
628 |
-
"models": [
|
629 |
-
{
|
630 |
-
"model": "CultriX/Qwen2.5-14B-Wernickev3",
|
631 |
-
"parameters": {
|
632 |
-
"weight": 0.25,
|
633 |
-
"density": 0.72
|
634 |
-
}
|
635 |
-
},
|
636 |
-
{
|
637 |
-
"model": "CultriX/Qwenfinity-2.5-14B",
|
638 |
-
"parameters": {
|
639 |
-
"weight": 0.22,
|
640 |
-
"density": 0.68
|
641 |
-
}
|
642 |
-
},
|
643 |
-
{
|
644 |
-
"model": "djuna/Q2.5-Veltha-14B-0.5",
|
645 |
-
"parameters": {
|
646 |
-
"weight": 0.20,
|
647 |
-
"density": 0.75
|
648 |
-
}
|
649 |
-
},
|
650 |
-
{
|
651 |
-
"model": "CultriX/Qwen2.5-14B-Broca",
|
652 |
-
"parameters": {
|
653 |
-
"weight": 0.16,
|
654 |
-
"density": 0.68
|
655 |
-
}
|
656 |
-
},
|
657 |
-
{
|
658 |
-
"model": "qingy2019/Qwen2.5-Math-14B-Instruct",
|
659 |
-
"parameters": {
|
660 |
-
"weight": 0.19,
|
661 |
-
"density": 0.75
|
662 |
-
}
|
663 |
-
},
|
664 |
-
{
|
665 |
-
"model": "CultriX/SeQwence-14Bv1",
|
666 |
-
"parameters": {
|
667 |
-
"weight": 0.13,
|
668 |
-
"density": 0.65
|
669 |
-
}
|
670 |
-
},
|
671 |
-
{
|
672 |
-
"model": "sometimesanotion/Qwen2.5-14B-Vimarckoso",
|
673 |
-
"parameters": {
|
674 |
-
"weight": 0.11,
|
675 |
-
"density": 0.62
|
676 |
-
}
|
677 |
-
},
|
678 |
-
{
|
679 |
-
"model": "allknowingroger/QwenSlerp6-14B",
|
680 |
-
"parameters": {
|
681 |
-
"weight": 0.09,
|
682 |
-
"density": 0.65
|
683 |
-
}
|
684 |
-
}
|
685 |
-
],
|
686 |
-
"adaptive_merge_parameters": {
|
687 |
-
"task_weights": {
|
688 |
-
"tinyArc": 1.65,
|
689 |
-
"tinyHellaswag": 1.55,
|
690 |
-
"tinyMMLU": 1.7,
|
691 |
-
"tinyTruthfulQA": 1.95,
|
692 |
-
"tinyTruthfulQA_mc1": 1.75,
|
693 |
-
"tinyWinogrande": 1.8,
|
694 |
-
"IFEval": 2.0,
|
695 |
-
"BBH": 1.75,
|
696 |
-
"MATH": 2.2,
|
697 |
-
"GPQA": 1.85,
|
698 |
-
"MUSR": 1.95,
|
699 |
-
"MMLU-PRO": 1.85
|
700 |
-
}
|
701 |
-
},
|
702 |
-
"tokenizer_source": "CultriX/Qwen2.5-14B-Wernickev3"
|
703 |
-
}
|
704 |
-
},
|
705 |
-
{
|
706 |
-
"rank": 71,
|
707 |
-
"name": "sometimesanotion/Qwentinuum-14B-v6-Prose",
|
708 |
-
"scores": {
|
709 |
-
"average": 38.46,
|
710 |
-
"IFEval": 56.43,
|
711 |
-
"BBH": 50.14,
|
712 |
-
"MATH": 35.57,
|
713 |
-
"GPQA": 18.46,
|
714 |
-
"MUSR": 21.34,
|
715 |
-
"MMLU-PRO": 48.80
|
716 |
-
},
|
717 |
-
"known_config": {
|
718 |
-
"name": "Qwentinuum-14B-v6-Prose-slerp",
|
719 |
-
"merge_method": "slerp",
|
720 |
-
"base_model": "sometimesanotion/Qwenvergence-14B-v6-Prose",
|
721 |
-
"tokenizer_source": "sometimesanotion/Qwenvergence-14B-v6-Prose",
|
722 |
-
"dtype": "bfloat16",
|
723 |
-
"out_dtype": "bfloat16",
|
724 |
-
"parameters": {
|
725 |
-
"int8_mask": True,
|
726 |
-
"normalize": True,
|
727 |
-
"rescale": False
|
728 |
-
},
|
729 |
-
"slices": [
|
730 |
-
{
|
731 |
-
"sources": [
|
732 |
-
{
|
733 |
-
"model": "sometimesanotion/Qwenvergence-14B-v6-Prose",
|
734 |
-
"layer_range": [0, 8]
|
735 |
-
},
|
736 |
-
{
|
737 |
-
"model": "sometimesanotion/Qwentinuum-14B-v6",
|
738 |
-
"layer_range": [0, 8]
|
739 |
-
}
|
740 |
-
]
|
741 |
-
},
|
742 |
-
{
|
743 |
-
"sources": [
|
744 |
-
{
|
745 |
-
"model": "sometimesanotion/Qwenvergence-14B-v6-Prose",
|
746 |
-
"layer_range": [8, 16]
|
747 |
-
},
|
748 |
-
{
|
749 |
-
"model": "sometimesanotion/Qwentinuum-14B-v6",
|
750 |
-
"layer_range": [8, 16]
|
751 |
-
}
|
752 |
-
]
|
753 |
-
},
|
754 |
-
{
|
755 |
-
"sources": [
|
756 |
-
{
|
757 |
-
"model": "sometimesanotion/Qwenvergence-14B-v6-Prose",
|
758 |
-
"layer_range": [16, 24]
|
759 |
-
},
|
760 |
-
{
|
761 |
-
"model": "sometimesanotion/Qwentinuum-14B-v6",
|
762 |
-
"layer_range": [16, 24]
|
763 |
-
}
|
764 |
-
]
|
765 |
-
},
|
766 |
-
{
|
767 |
-
"sources": [
|
768 |
-
{
|
769 |
-
"model": "sometimesanotion/Qwenvergence-14B-v6-Prose",
|
770 |
-
"layer_range": [24, 32]
|
771 |
-
},
|
772 |
-
{
|
773 |
-
"model": "sometimesanotion/Qwentinuum-14B-v6",
|
774 |
-
"layer_range": [24, 32]
|
775 |
-
}
|
776 |
-
]
|
777 |
-
},
|
778 |
-
{
|
779 |
-
"sources": [
|
780 |
-
{
|
781 |
-
"model": "sometimesanotion/Qwenvergence-14B-v6-Prose",
|
782 |
-
"layer_range": [32, 40]
|
783 |
-
},
|
784 |
-
{
|
785 |
-
"model": "sometimesanotion/Qwentinuum-14B-v6",
|
786 |
-
"layer_range": [32, 40]
|
787 |
-
}
|
788 |
-
]
|
789 |
-
},
|
790 |
-
{
|
791 |
-
"sources": [
|
792 |
-
{
|
793 |
-
"model": "sometimesanotion/Qwenvergence-14B-v6-Prose",
|
794 |
-
"layer_range": [40, 48]
|
795 |
-
},
|
796 |
-
{
|
797 |
-
"model": "sometimesanotion/Qwentinuum-14B-v6",
|
798 |
-
"layer_range": [40, 48]
|
799 |
-
}
|
800 |
-
]
|
801 |
-
}
|
802 |
-
],
|
803 |
-
# The 'parameters' block that includes "t: 0.40" is implied by the snippet
|
804 |
-
}
|
805 |
-
},
|
806 |
-
{
|
807 |
-
"rank": 76,
|
808 |
-
"name": "CultriX/Qwen2.5-14B-Brocav6",
|
809 |
-
"scores": {
|
810 |
-
"average": 38.32,
|
811 |
-
"IFEval": 69.95,
|
812 |
-
"BBH": 47.82,
|
813 |
-
"MATH": 29.61,
|
814 |
-
"GPQA": 15.66,
|
815 |
-
"MUSR": 18.88,
|
816 |
-
"MMLU-PRO": 47.99
|
817 |
-
},
|
818 |
-
"known_config": {
|
819 |
-
"merge_method": "della_linear",
|
820 |
-
"base_model": "CultriX/Qwen2.5-14B-Wernickev3",
|
821 |
-
"dtype": "bfloat16",
|
822 |
-
"parameters": {
|
823 |
-
"epsilon": 0.01,
|
824 |
-
"lambda": 1.5,
|
825 |
-
"normalize": True
|
826 |
-
},
|
827 |
-
"adaptive_merge_parameters": {
|
828 |
-
"task_weights": {
|
829 |
-
"tinyArc": 1.65,
|
830 |
-
"tinyHellaswag": 1.55,
|
831 |
-
"tinyMMLU": 1.7,
|
832 |
-
"tinyTruthfulQA": 1.95,
|
833 |
-
"tinyTruthfulQA_mc1": 1.75,
|
834 |
-
"tinyWinogrande": 1.8,
|
835 |
-
"IFEval": 2.0,
|
836 |
-
"BBH": 1.75,
|
837 |
-
"MATH": 2.2,
|
838 |
-
"GPQA": 1.85,
|
839 |
-
"MUSR": 1.95,
|
840 |
-
"MMLU-PRO": 1.85
|
841 |
-
},
|
842 |
-
"smoothing_factor": 0.08
|
843 |
-
},
|
844 |
-
"gradient_clipping": {
|
845 |
-
"CultriX/Qwen2.5-14B-Wernickev3": 0.85,
|
846 |
-
"CultriX/Qwenfinity-2.5-14B": 0.82,
|
847 |
-
"djuna/Q2.5-Veltha-14B-0.5": 0.92,
|
848 |
-
"CultriX/Qwen2.5-14B-Broca": 0.86,
|
849 |
-
"qingy2019/Qwen2.5-Math-14B-Instruct": 0.94,
|
850 |
-
"CultriX/SeQwence-14Bv1": 0.87,
|
851 |
-
"sometimesanotion/Qwen2.5-14B-Vimarckoso": 0.90,
|
852 |
-
"allknowingroger/QwenSlerp6-14B": 0.86
|
853 |
-
},
|
854 |
-
"models": [
|
855 |
-
{
|
856 |
-
"model": "CultriX/Qwen2.5-14B-Wernickev3",
|
857 |
-
"parameters": {
|
858 |
-
"weight": 0.25,
|
859 |
-
"density": 0.72
|
860 |
-
}
|
861 |
-
},
|
862 |
-
{
|
863 |
-
"model": "CultriX/Qwenfinity-2.5-14B",
|
864 |
-
"parameters": {
|
865 |
-
"weight": 0.22,
|
866 |
-
"density": 0.68
|
867 |
-
}
|
868 |
-
},
|
869 |
-
{
|
870 |
-
"model": "djuna/Q2.5-Veltha-14B-0.5",
|
871 |
-
"parameters": {
|
872 |
-
"weight": 0.20,
|
873 |
-
"density": 0.75
|
874 |
-
}
|
875 |
-
},
|
876 |
-
{
|
877 |
-
"model": "CultriX/Qwen2.5-14B-Broca",
|
878 |
-
"parameters": {
|
879 |
-
"weight": 0.16,
|
880 |
-
"density": 0.68
|
881 |
-
}
|
882 |
-
},
|
883 |
-
{
|
884 |
-
"model": "qingy2019/Qwen2.5-Math-14B-Instruct",
|
885 |
-
"parameters": {
|
886 |
-
"weight": 0.19,
|
887 |
-
"density": 0.75
|
888 |
-
}
|
889 |
-
},
|
890 |
-
{
|
891 |
-
"model": "CultriX/SeQwence-14Bv1",
|
892 |
-
"parameters": {
|
893 |
-
"weight": 0.13,
|
894 |
-
"density": 0.65
|
895 |
-
}
|
896 |
-
},
|
897 |
-
{
|
898 |
-
"model": "sometimesanotion/Qwen2.5-14B-Vimarckoso",
|
899 |
-
"parameters": {
|
900 |
-
"weight": 0.11,
|
901 |
-
"density": 0.62
|
902 |
-
}
|
903 |
-
},
|
904 |
-
{
|
905 |
-
"model": "allknowingroger/QwenSlerp6-14B",
|
906 |
-
"parameters": {
|
907 |
-
"weight": 0.09,
|
908 |
-
"density": 0.65
|
909 |
-
}
|
910 |
-
}
|
911 |
-
]
|
912 |
-
}
|
913 |
-
},
|
914 |
-
{
|
915 |
-
"rank": 80,
|
916 |
-
"name": "CultriX/SeQwence-14Bv1",
|
917 |
-
"scores": {
|
918 |
-
"average": 38.20,
|
919 |
-
"IFEval": 66.78,
|
920 |
-
"BBH": 47.19,
|
921 |
-
"MATH": 33.53,
|
922 |
-
"GPQA": 14.88,
|
923 |
-
"MUSR": 18.80,
|
924 |
-
"MMLU-PRO": 48.00
|
925 |
-
},
|
926 |
-
"known_config": {
|
927 |
-
"models": [
|
928 |
-
{
|
929 |
-
"model": "CultriX/Qwen2.5-14B-Wernicke",
|
930 |
-
"parameters": {
|
931 |
-
"weight": 0.35,
|
932 |
-
"density": 0.6
|
933 |
-
}
|
934 |
-
},
|
935 |
-
{
|
936 |
-
"model": "VAGOsolutions/SauerkrautLM-v2-14b-DPO",
|
937 |
-
"parameters": {
|
938 |
-
"weight": 0.30,
|
939 |
-
"density": 0.6
|
940 |
-
}
|
941 |
-
},
|
942 |
-
{
|
943 |
-
"model": "CultriX/Qwen2.5-14B-MegaMerge-pt2",
|
944 |
-
"parameters": {
|
945 |
-
"weight": 0.20,
|
946 |
-
"density": 0.5
|
947 |
-
}
|
948 |
-
},
|
949 |
-
{
|
950 |
-
"model": "CultriX/SeQwence-14B",
|
951 |
-
"parameters": {
|
952 |
-
"weight": 0.15,
|
953 |
-
"density": 0.4
|
954 |
-
}
|
955 |
-
},
|
956 |
-
{
|
957 |
-
"model": "v000000/Qwen2.5-Lumen-14B",
|
958 |
-
"parameters": {
|
959 |
-
"weight": 0.10,
|
960 |
-
"density": 0.5
|
961 |
-
}
|
962 |
-
}
|
963 |
-
],
|
964 |
-
"base_model": "Qwen/Qwen2.5-14B",
|
965 |
-
"merge_method": "dare_ties",
|
966 |
-
"parameters": {
|
967 |
-
"normalize": True,
|
968 |
-
"int8_mask": True
|
969 |
-
},
|
970 |
-
"dtype": "bfloat16",
|
971 |
-
"tokenizer_source": "Qwen/Qwen2.5-14B-Instruct"
|
972 |
-
}
|
973 |
-
},
|
974 |
-
{
|
975 |
-
"rank": 85,
|
976 |
-
"name": "sometimesanotion/Qwentinuum-14B-v013",
|
977 |
-
"scores": {
|
978 |
-
"average": 37.96,
|
979 |
-
"IFEval": 67.11,
|
980 |
-
"BBH": 43.97,
|
981 |
-
"MATH": 33.01,
|
982 |
-
"GPQA": 14.32,
|
983 |
-
"MUSR": 24.99,
|
984 |
-
"MMLU-PRO": 44.34
|
985 |
-
},
|
986 |
-
"known_config": {
|
987 |
-
"name": "Qwentinuum-14B-v013",
|
988 |
-
"merge_method": "model_stock",
|
989 |
-
"base_model": "Qwen/Qwen2.5-14B",
|
990 |
-
"tokenizer_source": "base",
|
991 |
-
"parameters": {
|
992 |
-
"int8_mask": True,
|
993 |
-
"normalize": True,
|
994 |
-
"rescale": False
|
995 |
-
},
|
996 |
-
"models": [
|
997 |
-
"sometimesanotion/Qwenvergence-14B-v3-Prose+sometimesanotion/Qwenvergence-Abliterate-512",
|
998 |
-
"sometimesanotion/Qwentinuum-14B-v011+sometimesanotion/Qwenvergence-Abliterate-512",
|
999 |
-
"sometimesanotion/Qwentinuum-14B-v012+sometimesanotion/Qwenvergence-Abliterate-256",
|
1000 |
-
"sometimesanotion/Qwenvergence-14B-v6-Prose+sometimesanotion/Qwenvergence-Abliterate-512",
|
1001 |
-
"sometimesanotion/Lamarck-14B-v0.3+sometimesanotion/Qwenvergence-Abliterate-512",
|
1002 |
-
"huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2"
|
1003 |
-
],
|
1004 |
-
"dtype": "bfloat16",
|
1005 |
-
"out_dtype": "bfloat16"
|
1006 |
-
}
|
1007 |
-
},
|
1008 |
-
{
|
1009 |
-
"rank": 86,
|
1010 |
-
"name": "CultriX/Qwen2.5-14B-Wernickev3",
|
1011 |
-
"scores": {
|
1012 |
-
"average": 37.94,
|
1013 |
-
"IFEval": 70.48,
|
1014 |
-
"BBH": 44.58,
|
1015 |
-
"MATH": 32.78,
|
1016 |
-
"GPQA": 14.99,
|
1017 |
-
"MUSR": 18.69,
|
1018 |
-
"MMLU-PRO": 46.13
|
1019 |
-
},
|
1020 |
-
"known_config": {
|
1021 |
-
"CONFIG SuperiorMerge-14B-From-2-to-10": {
|
1022 |
-
"models": [
|
1023 |
-
{
|
1024 |
-
"model": "VAGOsolutions/SauerkrautLM-v2-14b-DPO",
|
1025 |
-
"parameters": {
|
1026 |
-
"weight": 0.25,
|
1027 |
-
"density": 0.6
|
1028 |
-
}
|
1029 |
-
},
|
1030 |
-
{
|
1031 |
-
"model": "allknowingroger/QwenSlerp6-14B",
|
1032 |
-
"parameters": {
|
1033 |
-
"weight": 0.25,
|
1034 |
-
"density": 0.6
|
1035 |
-
}
|
1036 |
-
},
|
1037 |
-
{
|
1038 |
-
"model": "CultriX/SeQwence-14B-EvolMerge",
|
1039 |
-
"parameters": {
|
1040 |
-
"weight": 0.20,
|
1041 |
-
"density": 0.5
|
1042 |
-
}
|
1043 |
-
},
|
1044 |
-
{
|
1045 |
-
"model": "CultriX/Qwen2.5-14B-Wernicke",
|
1046 |
-
"parameters": {
|
1047 |
-
"weight": 0.15,
|
1048 |
-
"density": 0.5
|
1049 |
-
}
|
1050 |
-
},
|
1051 |
-
{
|
1052 |
-
"model": "allknowingroger/QwenStock3-14B",
|
1053 |
-
"parameters": {
|
1054 |
-
"weight": 0.15,
|
1055 |
-
"density": 0.5
|
1056 |
-
}
|
1057 |
-
}
|
1058 |
-
],
|
1059 |
-
"base_model": "Qwen/Qwen2.5-14B",
|
1060 |
-
"merge_method": "dare_ties",
|
1061 |
-
"parameters": {
|
1062 |
-
"normalize": True,
|
1063 |
-
"int8_mask": True
|
1064 |
-
},
|
1065 |
-
"dtype": "bfloat16",
|
1066 |
-
"tokenizer_source": "Qwen/Qwen2.5-14B-Instruct"
|
1067 |
-
}
|
1068 |
-
}
|
1069 |
-
},
|
1070 |
-
{
|
1071 |
-
"rank": 88,
|
1072 |
-
"name": "allknowingroger/QwenSlerp4-14B",
|
1073 |
-
"scores": {
|
1074 |
-
"average": 37.80,
|
1075 |
-
"IFEval": 63.28,
|
1076 |
-
"BBH": 49.38,
|
1077 |
-
"MATH": 30.97,
|
1078 |
-
"GPQA": 16.33,
|
1079 |
-
"MUSR": 17.59,
|
1080 |
-
"MMLU-PRO": 49.28
|
1081 |
-
},
|
1082 |
-
"known_config": {
|
1083 |
-
"models": [
|
1084 |
-
{
|
1085 |
-
"model": "CultriX/Qwen2.5-14B-Wernicke",
|
1086 |
-
"parameters": {
|
1087 |
-
"weight": 0.55,
|
1088 |
-
"density": 0.80
|
1089 |
-
}
|
1090 |
-
},
|
1091 |
-
{
|
1092 |
-
"model": "VAGOsolutions/SauerkrautLM-v2-14b-DPO",
|
1093 |
-
"parameters": {
|
1094 |
-
"weight": 0.20,
|
1095 |
-
"density": 0.60
|
1096 |
-
}
|
1097 |
-
},
|
1098 |
-
{
|
1099 |
-
"model": "rombodawg/Rombos-LLM-V2.6-Qwen-14b",
|
1100 |
-
"parameters": {
|
1101 |
-
"weight": 0.25,
|
1102 |
-
"density": 0.70
|
1103 |
-
}
|
1104 |
-
},
|
1105 |
-
{
|
1106 |
-
"model": "allknowingroger/Qwenslerp2-14B",
|
1107 |
-
"parameters": {
|
1108 |
-
"weight": 0.15,
|
1109 |
-
"density": 0.65
|
1110 |
-
}
|
1111 |
-
}
|
1112 |
-
],
|
1113 |
-
"base_model": "Qwen/Qwen2.5-14B",
|
1114 |
-
"merge_method": "dare_ties",
|
1115 |
-
"parameters": {
|
1116 |
-
"normalize": True,
|
1117 |
-
"int8_mask": True
|
1118 |
-
},
|
1119 |
-
"dtype": "bfloat16",
|
1120 |
-
"tokenizer_source": "Qwen/Qwen2.5-14B-Instruct",
|
1121 |
-
"adaptive_merge_parameters": {
|
1122 |
-
"task_weights": {
|
1123 |
-
"IFEval": 1.0,
|
1124 |
-
"MATH": 1.3,
|
1125 |
-
"GPQA": 1.1,
|
1126 |
-
"MUSR": 1.2,
|
1127 |
-
"MMLU-PRO": 1.0
|
1128 |
-
},
|
1129 |
-
"smoothing_factor": 0.15
|
1130 |
-
},
|
1131 |
-
"gradient_clipping": 1.0
|
1132 |
-
}
|
1133 |
-
},
|
1134 |
-
{
|
1135 |
-
"rank": 89,
|
1136 |
-
"name": "CultriX/Qwen2.5-14B-Broca",
|
1137 |
-
"scores": {
|
1138 |
-
"average": 37.72,
|
1139 |
-
"IFEval": 56.04,
|
1140 |
-
"BBH": 50.03,
|
1141 |
-
"MATH": 34.59,
|
1142 |
-
"GPQA": 18.23,
|
1143 |
-
"MUSR": 18.95,
|
1144 |
-
"MMLU-PRO": 48.49
|
1145 |
-
},
|
1146 |
-
"known_config": {
|
1147 |
-
"merge_method": "della_linear",
|
1148 |
-
"base_model": "CultriX/Qwen2.5-14B-Wernickev3",
|
1149 |
-
"dtype": "bfloat16",
|
1150 |
-
"parameters": {
|
1151 |
-
"epsilon": 0.03,
|
1152 |
-
"lambda": 1.1,
|
1153 |
-
"normalize": True
|
1154 |
-
},
|
1155 |
-
"adaptive_merge_parameters": {
|
1156 |
-
"task_weights": {
|
1157 |
-
"tinyArc": 1.3,
|
1158 |
-
"tinyHellaswag": 1.2,
|
1159 |
-
"tinyMMLU": 1.1,
|
1160 |
-
"tinyTruthfulQA": 1.4,
|
1161 |
-
"tinyWinogrande": 1.2,
|
1162 |
-
"IFEval": 1.3,
|
1163 |
-
"BBH": 1.3,
|
1164 |
-
"MATH": 1.4,
|
1165 |
-
"GPQA": 1.3,
|
1166 |
-
"MUSR": 1.2,
|
1167 |
-
"MMLU-PRO": 1.2
|
1168 |
-
},
|
1169 |
-
"smoothing_factor": 0.15
|
1170 |
-
},
|
1171 |
-
"gradient_clipping": 1.0,
|
1172 |
-
"models": [
|
1173 |
-
{
|
1174 |
-
"model": "CultriX/Qwen2.5-14B-Wernickev3",
|
1175 |
-
"parameters": {
|
1176 |
-
"weight": 0.5,
|
1177 |
-
"density": 0.7
|
1178 |
-
}
|
1179 |
-
},
|
1180 |
-
{
|
1181 |
-
"model": "djuna/Q2.5-Veltha-14B-0.5",
|
1182 |
-
"parameters": {
|
1183 |
-
"weight": 0.3,
|
1184 |
-
"density": 0.8
|
1185 |
-
}
|
1186 |
-
},
|
1187 |
-
{
|
1188 |
-
"model": "CultriX/SeQwence-14B-EvolMerge",
|
1189 |
-
"parameters": {
|
1190 |
-
"weight": 0.2,
|
1191 |
-
"density": 0.6
|
1192 |
-
}
|
1193 |
-
}
|
1194 |
-
],
|
1195 |
-
"tokenizer_source": "CultriX/Qwen2.5-14B-Wernickev3"
|
1196 |
-
}
|
1197 |
-
},
|
1198 |
-
{
|
1199 |
-
"rank": 90,
|
1200 |
-
"name": "CultriX/Qwen2.5-14B-Emerged",
|
1201 |
-
"scores": {
|
1202 |
-
"average": 37.66,
|
1203 |
-
"IFEval": 70.00,
|
1204 |
-
"BBH": 45.93,
|
1205 |
-
"MATH": 30.74,
|
1206 |
-
"GPQA": 14.32,
|
1207 |
-
"MUSR": 18.47,
|
1208 |
-
"MMLU-PRO": 46.51
|
1209 |
-
},
|
1210 |
-
"known_config": {
|
1211 |
-
"models": [
|
1212 |
-
{"model": "CultriX/Qwen2.5-14B-Wernickev3"},
|
1213 |
-
{"model": "CultriX/Qwen2.5-14B-Wernickev5"}
|
1214 |
-
],
|
1215 |
-
"merge_method": "slerp",
|
1216 |
-
"base_model": "CultriX/Qwen2.5-14B-Wernickev3",
|
1217 |
-
"dtype": "bfloat16",
|
1218 |
-
"parameters": {
|
1219 |
-
"t": [0, 0.5, 1, 0.5, 0]
|
1220 |
-
},
|
1221 |
-
"dtype_duplicate": "bfloat16", # The snippet repeated 'dtype' line
|
1222 |
-
"adaptive_merge_parameters": {
|
1223 |
-
"task_weights": {
|
1224 |
-
"tinyArc": 1.2,
|
1225 |
-
"tinyHellaswag": 1.1,
|
1226 |
-
"tinyMMLU": 1.2,
|
1227 |
-
"tinyTruthfulQA": 1.3,
|
1228 |
-
"tinyTruthfulQA_mc1": 1.1,
|
1229 |
-
"tinyWinogrande": 1.2
|
1230 |
-
},
|
1231 |
-
"smoothing_factor": 0.2
|
1232 |
-
},
|
1233 |
-
"gradient_clipping": 1.0
|
1234 |
-
}
|
1235 |
-
},
|
1236 |
-
{
|
1237 |
-
"rank": 91,
|
1238 |
-
"name": "sometimesanotion/Qwentinuum-14B-v8",
|
1239 |
-
"scores": {
|
1240 |
-
"average": 37.65,
|
1241 |
-
"IFEval": 54.12,
|
1242 |
-
"BBH": 50.11,
|
1243 |
-
"MATH": 34.14,
|
1244 |
-
"GPQA": 17.79,
|
1245 |
-
"MUSR": 20.75,
|
1246 |
-
"MMLU-PRO": 49.02
|
1247 |
-
},
|
1248 |
-
"known_config": None
|
1249 |
-
},
|
1250 |
-
{
|
1251 |
-
"rank": 92,
|
1252 |
-
"name": "qingy2024/Fusion-14B-Instruct",
|
1253 |
-
"scores": {
|
1254 |
-
"average": 37.64,
|
1255 |
-
"IFEval": 72.60,
|
1256 |
-
"BBH": 48.58,
|
1257 |
-
"MATH": 30.97,
|
1258 |
-
"GPQA": 13.98,
|
1259 |
-
"MUSR": 14.81,
|
1260 |
-
"MMLU-PRO": 44.93
|
1261 |
-
},
|
1262 |
-
"known_config": {
|
1263 |
-
"models": [
|
1264 |
-
{
|
1265 |
-
"model": "qingy2024/Qwen2.5-Math-14B-Instruct-Preview",
|
1266 |
-
"parameters": {
|
1267 |
-
"weight": 0.3,
|
1268 |
-
"density": 0.6
|
1269 |
-
}
|
1270 |
-
},
|
1271 |
-
{
|
1272 |
-
"model": "arcee-ai/Virtuoso-Small",
|
1273 |
-
"parameters": {
|
1274 |
-
"weight": 0.7,
|
1275 |
-
"density": 0.6
|
1276 |
-
}
|
1277 |
-
}
|
1278 |
-
],
|
1279 |
-
"base_model": "Qwen/Qwen2.5-14B",
|
1280 |
-
"merge_method": "dare_ties",
|
1281 |
-
"parameters": {
|
1282 |
-
"normalize": True,
|
1283 |
-
"int8_mask": True
|
1284 |
-
},
|
1285 |
-
"dtype": "bfloat16",
|
1286 |
-
"tokenizer_source": "Qwen/Qwen2.5-14B-Instruct"
|
1287 |
-
}
|
1288 |
-
},
|
1289 |
-
{
|
1290 |
-
"rank": 94,
|
1291 |
-
"name": "CultriX/Qwestion-14B",
|
1292 |
-
"scores": {
|
1293 |
-
"average": 37.63,
|
1294 |
-
"IFEval": 63.18,
|
1295 |
-
"BBH": 48.76,
|
1296 |
-
"MATH": 31.72,
|
1297 |
-
"GPQA": 15.77,
|
1298 |
-
"MUSR": 17.22,
|
1299 |
-
"MMLU-PRO": 49.14
|
1300 |
-
},
|
1301 |
-
"known_config": {
|
1302 |
-
"models": [
|
1303 |
-
{
|
1304 |
-
"model": "CultriX/Qwen2.5-14B-Wernicke",
|
1305 |
-
"parameters": {
|
1306 |
-
"weight": 0.55,
|
1307 |
-
"density": 0.80
|
1308 |
-
}
|
1309 |
-
},
|
1310 |
-
{
|
1311 |
-
"model": "VAGOsolutions/SauerkrautLM-v2-14b-DPO",
|
1312 |
-
"parameters": {
|
1313 |
-
"weight": 0.20,
|
1314 |
-
"density": 0.60
|
1315 |
-
}
|
1316 |
-
},
|
1317 |
-
{
|
1318 |
-
"model": "rombodawg/Rombos-LLM-V2.6-Qwen-14b",
|
1319 |
-
"parameters": {
|
1320 |
-
"weight": 0.25,
|
1321 |
-
"density": 0.70
|
1322 |
-
}
|
1323 |
-
},
|
1324 |
-
{
|
1325 |
-
"model": "allknowingroger/Qwenslerp2-14B",
|
1326 |
-
"parameters": {
|
1327 |
-
"weight": 0.15,
|
1328 |
-
"density": 0.65
|
1329 |
-
}
|
1330 |
-
}
|
1331 |
-
],
|
1332 |
-
"base_model": "Qwen/Qwen2.5-14B",
|
1333 |
-
"merge_method": "dare_ties",
|
1334 |
-
"parameters": {
|
1335 |
-
"normalize": True,
|
1336 |
-
"int8_mask": True
|
1337 |
-
},
|
1338 |
-
"dtype": "bfloat16",
|
1339 |
-
"tokenizer_source": "Qwen/Qwen2.5-14B-Instruct",
|
1340 |
-
"adaptive_merge_parameters": {
|
1341 |
-
"task_weights": {
|
1342 |
-
"IFEval": 1.0,
|
1343 |
-
"MATH": 1.3,
|
1344 |
-
"GPQA": 1.1,
|
1345 |
-
"MUSR": 1.2,
|
1346 |
-
"MMLU-PRO": 1.0
|
1347 |
-
},
|
1348 |
-
"smoothing_factor": 0.15
|
1349 |
-
},
|
1350 |
-
"gradient_clipping": 1.0
|
1351 |
-
}
|
1352 |
-
},
|
1353 |
-
{
|
1354 |
-
"rank": 99,
|
1355 |
-
"name": "sometimesanotion/Qwenvergence-14B-v3-Prose",
|
1356 |
-
"scores": {
|
1357 |
-
"average": 37.37,
|
1358 |
-
"IFEval": 49.18,
|
1359 |
-
"BBH": 49.80,
|
1360 |
-
"MATH": 35.57,
|
1361 |
-
"GPQA": 19.35,
|
1362 |
-
"MUSR": 21.77,
|
1363 |
-
"MMLU-PRO": 48.55
|
1364 |
-
},
|
1365 |
-
"known_config": None
|
1366 |
-
},
|
1367 |
-
{
|
1368 |
-
"rank": 102,
|
1369 |
-
"name": "CultriX/SeQwence-14B-v5",
|
1370 |
-
"scores": {
|
1371 |
-
"average": 37.27,
|
1372 |
-
"IFEval": 59.20,
|
1373 |
-
"BBH": 50.00,
|
1374 |
-
"MATH": 31.04,
|
1375 |
-
"GPQA": 16.00,
|
1376 |
-
"MUSR": 18.33,
|
1377 |
-
"MMLU-PRO": 49.05
|
1378 |
-
},
|
1379 |
-
"known_config": None
|
1380 |
-
},
|
1381 |
-
{
|
1382 |
-
"rank": 103,
|
1383 |
-
"name": "sometimesanotion/Qwen-14B-ProseStock-v4",
|
1384 |
-
"scores": {
|
1385 |
-
"average": 37.23,
|
1386 |
-
"IFEval": 49.42,
|
1387 |
-
"BBH": 49.54,
|
1388 |
-
"MATH": 35.50,
|
1389 |
-
"GPQA": 18.46,
|
1390 |
-
"MUSR": 21.70,
|
1391 |
-
"MMLU-PRO": 48.74
|
1392 |
-
},
|
1393 |
-
"known_config": None
|
1394 |
-
},
|
1395 |
-
{
|
1396 |
-
"rank": 104,
|
1397 |
-
"name": "sometimesanotion/IF-reasoning-experiment-40",
|
1398 |
-
"scores": {
|
1399 |
-
"average": 37.21,
|
1400 |
-
"IFEval": 63.30,
|
1401 |
-
"BBH": 44.31,
|
1402 |
-
"MATH": 27.72,
|
1403 |
-
"GPQA": 17.34,
|
1404 |
-
"MUSR": 25.86,
|
1405 |
-
"MMLU-PRO": 44.72
|
1406 |
-
},
|
1407 |
-
"known_config": {
|
1408 |
-
"name": "sometimesanotion/IF-reasoning-experiment-40",
|
1409 |
-
"merge_method": "slerp",
|
1410 |
-
"base_model": "sometimesanotion/Qwenvergence-Abliterate",
|
1411 |
-
"tokenizer_source": "base",
|
1412 |
-
"dtype": "float32",
|
1413 |
-
"out_dtype": "bfloat16",
|
1414 |
-
"parameters": {
|
1415 |
-
"t": [
|
1416 |
-
{"value": 0.40}
|
1417 |
-
]
|
1418 |
-
},
|
1419 |
-
"slices": [
|
1420 |
-
{
|
1421 |
-
"sources": [
|
1422 |
-
{
|
1423 |
-
"model": "sometimesanotion/Qwenvergence-Abliterate",
|
1424 |
-
"layer_range": [0, 48]
|
1425 |
-
},
|
1426 |
-
{
|
1427 |
-
"model": "sometimesanotion/Qwen2.5-14B-Vimarckoso-v3+sometimesanotion/Qwenvergence-Abliterate-64",
|
1428 |
-
"layer_range": [0, 48]
|
1429 |
-
}
|
1430 |
-
]
|
1431 |
-
}
|
1432 |
-
]
|
1433 |
-
}
|
1434 |
-
},
|
1435 |
-
{
|
1436 |
-
"rank": 105,
|
1437 |
-
"name": "CultriX/SeQwence-14B-EvolMerge",
|
1438 |
-
"scores": {
|
1439 |
-
"average": 37.20,
|
1440 |
-
"IFEval": 53.82,
|
1441 |
-
"BBH": 50.78,
|
1442 |
-
"MATH": 31.80,
|
1443 |
-
"GPQA": 17.45,
|
1444 |
-
"MUSR": 20.26,
|
1445 |
-
"MMLU-PRO": 49.10
|
1446 |
-
},
|
1447 |
-
"known_config": {
|
1448 |
-
"base_model": "CultriX/SeQwence-14Bv1",
|
1449 |
-
"dtype": "bfloat16",
|
1450 |
-
"merge_method": "dare_ties",
|
1451 |
-
"parameters": {
|
1452 |
-
"int8_mask": 1.0,
|
1453 |
-
"normalize": 1.0
|
1454 |
-
},
|
1455 |
-
"slices": [
|
1456 |
-
{
|
1457 |
-
"sources": [
|
1458 |
-
{
|
1459 |
-
"layer_range": [0, 48],
|
1460 |
-
"model": "CultriX/SeQwence-14Bv1",
|
1461 |
-
"parameters": {
|
1462 |
-
"density": [
|
1463 |
-
0.9723868064882017,
|
1464 |
-
1.0,
|
1465 |
-
1.0,
|
1466 |
-
1.0,
|
1467 |
-
1.0,
|
1468 |
-
0.9714039829478123
|
1469 |
-
],
|
1470 |
-
"weight": [
|
1471 |
-
0.303941801676895,
|
1472 |
-
0.364404551023674,
|
1473 |
-
0.315900913803921,
|
1474 |
-
0.3276032249804535,
|
1475 |
-
0.32167313684876814,
|
1476 |
-
0.4385348686221433
|
1477 |
-
]
|
1478 |
-
}
|
1479 |
-
},
|
1480 |
-
{
|
1481 |
-
"layer_range": [0, 48],
|
1482 |
-
"model": "CultriX/Qwestion-14B",
|
1483 |
-
"parameters": {
|
1484 |
-
"density": [
|
1485 |
-
1.0,
|
1486 |
-
0.9914516102369406,
|
1487 |
-
1.0,
|
1488 |
-
0.8035966798672015,
|
1489 |
-
0.8192028457518323,
|
1490 |
-
0.9514479609471497
|
1491 |
-
],
|
1492 |
-
"weight": [
|
1493 |
-
0.23754044230348376,
|
1494 |
-
0.26302919982461254,
|
1495 |
-
0.26313082788173275,
|
1496 |
-
0.17815237275761467,
|
1497 |
-
0.34301750695974753,
|
1498 |
-
0.5374787613924082
|
1499 |
-
]
|
1500 |
-
}
|
1501 |
-
},
|
1502 |
-
{
|
1503 |
-
"layer_range": [0, 48],
|
1504 |
-
"model": "CultriX/Qwen2.5-14B-Wernicke",
|
1505 |
-
"parameters": {
|
1506 |
-
"density": [
|
1507 |
-
0.9250003667144193,
|
1508 |
-
0.9603820599250329,
|
1509 |
-
0.8766642760655986,
|
1510 |
-
1.0,
|
1511 |
-
0.9993615706551808,
|
1512 |
-
0.7459506348277176
|
1513 |
-
],
|
1514 |
-
"weight": [
|
1515 |
-
0.48038202535582214,
|
1516 |
-
0.5870170049221364,
|
1517 |
-
0.27054455623315504,
|
1518 |
-
0.06016442415521043,
|
1519 |
-
0.4012739361231067,
|
1520 |
-
0.26890177448533076
|
1521 |
-
]
|
1522 |
-
}
|
1523 |
-
}
|
1524 |
-
]
|
1525 |
-
}
|
1526 |
-
]
|
1527 |
-
}
|
1528 |
-
}
|
1529 |
]
|
1530 |
|
1531 |
-
|
1532 |
-
|
1533 |
-
|
1534 |
-
|
|
|
|
|
|
|
1535 |
|
1536 |
def print_benchmark_and_config_info(model_info):
|
1537 |
"""
|
1538 |
-
Prints
|
1539 |
-
|
1540 |
"""
|
1541 |
print("---")
|
1542 |
print(f"Model Rank: {model_info['rank']}")
|
@@ -1550,18 +277,33 @@ def print_benchmark_and_config_info(model_info):
|
|
1550 |
print(f"Models average score in MMLU-PRO benchmarks in %: {model_info['scores']['MMLU-PRO']}")
|
1551 |
|
1552 |
if model_info["known_config"] is not None:
|
|
|
1553 |
print("###")
|
1554 |
-
|
1555 |
-
|
1556 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1557 |
print("###")
|
1558 |
else:
|
1559 |
-
|
1560 |
-
|
1561 |
-
|
1562 |
-
|
1563 |
-
|
1564 |
-
|
|
|
|
|
1565 |
from bs4 import BeautifulSoup
|
1566 |
|
1567 |
def scrape_model_page(model_url):
|
@@ -1571,10 +313,8 @@ def scrape_model_page(model_url):
|
|
1571 |
return f"Error: Unable to fetch the page (Status Code: {{response.status_code}})"
|
1572 |
|
1573 |
soup = BeautifulSoup(response.text, "html.parser")
|
1574 |
-
|
1575 |
yaml_config = soup.find("pre")
|
1576 |
yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found."
|
1577 |
-
|
1578 |
metadata_section = soup.find("div", class_="metadata")
|
1579 |
metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found."
|
1580 |
|
@@ -1587,71 +327,93 @@ def scrape_model_page(model_url):
|
|
1587 |
return f"Error: {{str(e)}}"
|
1588 |
|
1589 |
if __name__ == "__main__":
|
1590 |
-
model_url = "
|
1591 |
result = scrape_model_page(model_url)
|
1592 |
-
print(result)'''
|
1593 |
-
|
1594 |
-
|
1595 |
-
|
1596 |
-
|
1597 |
-
|
1598 |
-
"""
|
1599 |
-
Recursively prints dict 'data' as pseudo-YAML to stdout.
|
1600 |
-
(We do it manually because the user data can be nested.)
|
1601 |
-
"""
|
1602 |
-
indent = " " * indent_level
|
1603 |
-
if isinstance(data, dict):
|
1604 |
-
for k, v in data.items():
|
1605 |
-
if isinstance(v, dict):
|
1606 |
-
print(f"{indent}{k}:")
|
1607 |
-
_print_dict_as_yaml(v, indent_level+1)
|
1608 |
-
elif isinstance(v, list):
|
1609 |
-
print(f"{indent}{k}:")
|
1610 |
-
for item in v:
|
1611 |
-
if isinstance(item, dict):
|
1612 |
-
print(f"{indent}-")
|
1613 |
-
_print_dict_as_yaml(item, indent_level+2)
|
1614 |
-
else:
|
1615 |
-
print(f"{indent}- {item}")
|
1616 |
-
else:
|
1617 |
-
print(f"{indent}{k}: {v}")
|
1618 |
-
else:
|
1619 |
-
print(f"{indent}{data}")
|
1620 |
-
|
1621 |
|
1622 |
-
def
|
1623 |
"""
|
1624 |
-
|
1625 |
-
|
1626 |
-
We capture the stdout prints, then return them as a single string.
|
1627 |
"""
|
1628 |
old_stdout = sys.stdout
|
1629 |
-
|
1630 |
-
sys.stdout =
|
1631 |
|
1632 |
-
|
|
|
1633 |
print_benchmark_and_config_info(model)
|
1634 |
|
1635 |
sys.stdout = old_stdout
|
1636 |
-
return
|
1637 |
-
|
1638 |
|
1639 |
-
# ---------------------------------------------------------
|
1640 |
-
# PART 3: GRADIO APP
|
1641 |
-
# ---------------------------------------------------------
|
1642 |
|
1643 |
-
|
1644 |
-
|
1645 |
-
|
1646 |
-
and returns the captured output text.
|
1647 |
-
"""
|
1648 |
-
return run_parsing_script()
|
1649 |
|
1650 |
with gr.Blocks() as demo:
|
1651 |
-
gr.Markdown("#
|
1652 |
-
|
1653 |
-
|
1654 |
-
|
1655 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1656 |
|
1657 |
demo.launch()
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import seaborn as sns
|
4 |
+
import gradio as gr
|
5 |
import requests
|
6 |
from bs4 import BeautifulSoup
|
7 |
+
import io
|
8 |
+
import os
|
9 |
+
import base64
|
10 |
+
import zipfile
|
11 |
+
from PIL import Image
|
12 |
+
from io import BytesIO
|
13 |
+
import tempfile
|
14 |
+
import sys
|
15 |
+
|
16 |
+
# --------------------------------------------------------------------
|
17 |
+
# PART 1: YOUR EXISTING DATA & PLOTS (unchanged)
|
18 |
+
# --------------------------------------------------------------------
|
19 |
+
|
20 |
+
data_full = [
|
21 |
+
['CultriX/Qwen2.5-14B-SLERPv7', 'https://huggingface.co/CultriX/Qwen2.5-14B-SLERPv7', 0.7205, 0.8272, 0.7541, 0.6581, 0.5, 0.729],
|
22 |
+
['djuna/Q2.5-Veltha-14B-0.5', 'https://huggingface.co/djuna/Q2.5-Veltha-14B-0.5', 0.7492, 0.8386, 0.7305, 0.598, 0.43, 0.7817],
|
23 |
+
['CultriX/Qwen2.5-14B-FinalMerge', 'https://huggingface.co/CultriX/Qwen2.5-14B-FinalMerge', 0.7248, 0.8277, 0.7113, 0.7052, 0.57, 0.7001],
|
24 |
+
['CultriX/Qwen2.5-14B-MultiCultyv2', 'https://huggingface.co/CultriX/Qwen2.5-14B-MultiCultyv2', 0.7295, 0.8359, 0.7363, 0.5767, 0.44, 0.7316],
|
25 |
+
['CultriX/Qwen2.5-14B-Brocav7', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav7', 0.7445, 0.8353, 0.7508, 0.6292, 0.46, 0.7629],
|
26 |
+
['CultriX/Qwen2.5-14B-Broca', 'https://huggingface.co/CultriX/Qwen2.5-14B-Broca', 0.7456, 0.8352, 0.748, 0.6034, 0.44, 0.7716],
|
27 |
+
['CultriX/Qwen2.5-14B-Brocav3', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav3', 0.7395, 0.8388, 0.7393, 0.6405, 0.47, 0.7659],
|
28 |
+
['CultriX/Qwen2.5-14B-Brocav4', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav4', 0.7432, 0.8377, 0.7444, 0.6277, 0.48, 0.758],
|
29 |
+
['CultriX/Qwen2.5-14B-Brocav2', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav2', 0.7492, 0.8302, 0.7508, 0.6377, 0.51, 0.7478],
|
30 |
+
['CultriX/Qwen2.5-14B-Brocav5', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav5', 0.7445, 0.8313, 0.7547, 0.6376, 0.5, 0.7304],
|
31 |
+
['CultriX/Qwen2.5-14B-Brocav6', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav6', 0.7179, 0.8354, 0.7531, 0.6378, 0.49, 0.7524],
|
32 |
+
['CultriX/Qwenfinity-2.5-14B', 'https://huggingface.co/CultriX/Qwenfinity-2.5-14B', 0.7347, 0.8254, 0.7279, 0.7267, 0.56, 0.697],
|
33 |
+
['CultriX/Qwen2.5-14B-Emergedv2', 'https://huggingface.co/CultriX/Qwen2.5-14B-Emergedv2', 0.7137, 0.8335, 0.7363, 0.5836, 0.44, 0.7344],
|
34 |
+
['CultriX/Qwen2.5-14B-Unity', 'https://huggingface.co/CultriX/Qwen2.5-14B-Unity', 0.7063, 0.8343, 0.7423, 0.682, 0.57, 0.7498],
|
35 |
+
['CultriX/Qwen2.5-14B-MultiCultyv3', 'https://huggingface.co/CultriX/Qwen2.5-14B-MultiCultyv3', 0.7132, 0.8216, 0.7395, 0.6792, 0.55, 0.712],
|
36 |
+
['CultriX/Qwen2.5-14B-Emergedv3', 'https://huggingface.co/CultriX/Qwen2.5-14B-Emergedv3', 0.7436, 0.8312, 0.7519, 0.6585, 0.55, 0.7068],
|
37 |
+
['CultriX/SeQwence-14Bv1', 'https://huggingface.co/CultriX/SeQwence-14Bv1', 0.7278, 0.841, 0.7541, 0.6816, 0.52, 0.7539],
|
38 |
+
['CultriX/Qwen2.5-14B-Wernickev2', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev2', 0.7391, 0.8168, 0.7273, 0.622, 0.45, 0.7572],
|
39 |
+
['CultriX/Qwen2.5-14B-Wernickev3', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev3', 0.7357, 0.8148, 0.7245, 0.7023, 0.55, 0.7869],
|
40 |
+
['CultriX/Qwen2.5-14B-Wernickev4', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev4', 0.7355, 0.829, 0.7497, 0.6306, 0.48, 0.7635],
|
41 |
+
['CultriX/SeQwential-14B-v1', 'https://huggingface.co/CultriX/SeQwential-14B-v1', 0.7355, 0.8205, 0.7549, 0.6367, 0.48, 0.7626],
|
42 |
+
['CultriX/Qwen2.5-14B-Wernickev5', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev5', 0.7224, 0.8272, 0.7541, 0.679, 0.51, 0.7578],
|
43 |
+
['CultriX/Qwen2.5-14B-Wernickev6', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev6', 0.6994, 0.7549, 0.5816, 0.6991, 0.58, 0.7267],
|
44 |
+
['CultriX/Qwen2.5-14B-Wernickev7', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev7', 0.7147, 0.7599, 0.6097, 0.7056, 0.57, 0.7164],
|
45 |
+
['CultriX/Qwen2.5-14B-FinalMerge-tmp2', 'https://huggingface.co/CultriX/Qwen2.5-14B-FinalMerge-tmp2', 0.7255, 0.8192, 0.7535, 0.6671, 0.5, 0.7612],
|
46 |
+
['CultriX/Qwen2.5-14B-BrocaV8', 'https://huggingface.co/CultriX/Qwen2.5-14B-BrocaV8', 0.7415, 0.8396, 0.7334, 0.5785, 0.4300, 0.7646],
|
47 |
+
]
|
48 |
+
|
49 |
+
columns = ["Model Configuration", "Model Link", "tinyArc", "tinyHellaswag",
|
50 |
+
"tinyMMLU", "tinyTruthfulQA", "tinyTruthfulQA_mc1", "tinyWinogrande"]
|
51 |
+
df_full = pd.DataFrame(data_full, columns=columns)
|
52 |
+
|
53 |
+
def plot_average_scores():
|
54 |
+
df_full["Average Score"] = df_full.iloc[:, 2:].mean(axis=1)
|
55 |
+
df_avg_sorted = df_full.sort_values(by="Average Score", ascending=False)
|
56 |
+
|
57 |
+
plt.figure(figsize=(14, 10))
|
58 |
+
plt.barh(df_avg_sorted["Model Configuration"], df_avg_sorted["Average Score"])
|
59 |
+
plt.title("Average Performance of Models Across Tasks", fontsize=16)
|
60 |
+
plt.xlabel("Average Score", fontsize=14)
|
61 |
+
plt.ylabel("Model Configuration", fontsize=14)
|
62 |
+
plt.gca().invert_yaxis()
|
63 |
+
plt.grid(axis='x', linestyle='--', alpha=0.7)
|
64 |
+
plt.tight_layout()
|
65 |
+
|
66 |
+
img_buffer = io.BytesIO()
|
67 |
+
plt.savefig(img_buffer, format='png')
|
68 |
+
img_buffer.seek(0)
|
69 |
+
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
70 |
+
plt.close()
|
71 |
+
|
72 |
+
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
|
73 |
+
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
74 |
+
pil_image.save(temp_image_file.name)
|
75 |
+
return pil_image, temp_image_file.name
|
76 |
+
|
77 |
+
def plot_task_performance():
|
78 |
+
df_full_melted = df_full.melt(id_vars=["Model Configuration", "Model Link"],
|
79 |
+
var_name="Task", value_name="Score")
|
80 |
+
|
81 |
+
plt.figure(figsize=(16, 12))
|
82 |
+
for model in df_full["Model Configuration"]:
|
83 |
+
model_data = df_full_melted[df_full_melted["Model Configuration"] == model]
|
84 |
+
plt.plot(model_data["Task"], model_data["Score"], marker="o", label=model)
|
85 |
+
|
86 |
+
plt.title("Performance of All Models Across Tasks", fontsize=16)
|
87 |
+
plt.xlabel("Task", fontsize=14)
|
88 |
+
plt.ylabel("Score", fontsize=14)
|
89 |
+
plt.xticks(rotation=45)
|
90 |
+
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize=9)
|
91 |
+
plt.grid(axis='y', linestyle='--', alpha=0.7)
|
92 |
+
plt.tight_layout()
|
93 |
+
|
94 |
+
img_buffer = io.BytesIO()
|
95 |
+
plt.savefig(img_buffer, format='png')
|
96 |
+
img_buffer.seek(0)
|
97 |
+
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
98 |
+
plt.close()
|
99 |
+
|
100 |
+
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
|
101 |
+
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
102 |
+
pil_image.save(temp_image_file.name)
|
103 |
+
return pil_image, temp_image_file.name
|
104 |
+
|
105 |
+
def plot_task_specific_top_models():
|
106 |
+
top_models = df_full.iloc[:, 2:].idxmax()
|
107 |
+
top_scores = df_full.iloc[:, 2:].max()
|
108 |
+
results = pd.DataFrame({"Top Model": top_models, "Score": top_scores}).reset_index().rename(columns={"index": "Task"})
|
109 |
+
|
110 |
+
plt.figure(figsize=(14, 8))
|
111 |
+
plt.bar(results["Task"], results["Score"])
|
112 |
+
plt.title("Task-Specific Top Models", fontsize=16)
|
113 |
+
plt.xlabel("Task", fontsize=14)
|
114 |
+
plt.ylabel("Score", fontsize=14)
|
115 |
+
plt.grid(axis="y", linestyle="--", alpha=0.7)
|
116 |
+
plt.tight_layout()
|
117 |
+
|
118 |
+
img_buffer = io.BytesIO()
|
119 |
+
plt.savefig(img_buffer, format='png')
|
120 |
+
img_buffer.seek(0)
|
121 |
+
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
122 |
+
plt.close()
|
123 |
+
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
|
124 |
+
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
125 |
+
pil_image.save(temp_image_file.name)
|
126 |
+
return pil_image, temp_image_file.name
|
127 |
+
|
128 |
+
def plot_heatmap():
|
129 |
+
plt.figure(figsize=(14, 10))
|
130 |
+
sns.heatmap(df_full.iloc[:, 2:], annot=True, cmap="YlGnBu",
|
131 |
+
xticklabels=columns[2:], yticklabels=df_full["Model Configuration"])
|
132 |
+
plt.title("Performance Heatmap", fontsize=16)
|
133 |
+
plt.tight_layout()
|
134 |
+
|
135 |
+
img_buffer = io.BytesIO()
|
136 |
+
plt.savefig(img_buffer, format='png')
|
137 |
+
img_buffer.seek(0)
|
138 |
+
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
139 |
+
plt.close()
|
140 |
+
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
|
141 |
+
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
142 |
+
pil_image.save(temp_image_file.name)
|
143 |
+
return pil_image, temp_image_file.name
|
144 |
+
|
145 |
+
def scrape_mergekit_config(model_name):
|
146 |
+
model_link = df_full.loc[df_full["Model Configuration"] == model_name, "Model Link"].values[0]
|
147 |
+
response = requests.get(model_link)
|
148 |
+
if response.status_code != 200:
|
149 |
+
return f"Failed to fetch model page for {model_name}. Please check the link."
|
150 |
+
|
151 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
152 |
+
yaml_config = soup.find("pre") # Assume YAML is in <pre> tags
|
153 |
+
if yaml_config:
|
154 |
+
return yaml_config.text.strip()
|
155 |
+
return f"No YAML configuration found for {model_name}."
|
156 |
+
|
157 |
+
def download_yaml(yaml_content, model_name):
|
158 |
+
if "No YAML configuration found" in yaml_content or "Failed to fetch model page" in yaml_content:
|
159 |
+
return None
|
160 |
+
filename = f"{model_name.replace('/', '_')}_config.yaml"
|
161 |
+
return gr.File(value=yaml_content.encode(), filename=filename)
|
162 |
+
|
163 |
+
def scrape_model_page(model_url):
|
164 |
+
try:
|
165 |
+
response = requests.get(model_url)
|
166 |
+
if response.status_code != 200:
|
167 |
+
return f"Error: Unable to fetch the page (Status Code: {response.status_code})"
|
168 |
+
|
169 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
170 |
+
yaml_config = soup.find("pre")
|
171 |
+
yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found."
|
172 |
+
metadata_section = soup.find("div", class_="metadata")
|
173 |
+
metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found."
|
174 |
+
return f"**YAML Configuration:**\n{yaml_text}\n\n**Metadata:**\n{metadata_text}"
|
175 |
+
except Exception as e:
|
176 |
+
return f"Error: {str(e)}"
|
177 |
+
|
178 |
+
def display_scraped_model_data(model_url):
|
179 |
+
return scrape_model_page(model_url)
|
180 |
+
|
181 |
+
def download_all_data():
|
182 |
+
csv_buffer = io.StringIO()
|
183 |
+
df_full.to_csv(csv_buffer, index=False)
|
184 |
+
csv_data = csv_buffer.getvalue().encode('utf-8')
|
185 |
+
|
186 |
+
average_plot_pil, average_plot_name = plot_average_scores()
|
187 |
+
task_plot_pil, task_plot_name = plot_task_performance()
|
188 |
+
top_models_plot_pil, top_models_plot_name = plot_task_specific_top_models()
|
189 |
+
heatmap_plot_pil, heatmap_plot_name = plot_heatmap()
|
190 |
+
|
191 |
+
plot_dict = {
|
192 |
+
"average_performance": (average_plot_pil, average_plot_name),
|
193 |
+
"task_performance": (task_plot_pil, task_plot_name),
|
194 |
+
"top_models": (top_models_plot_pil, top_models_plot_name),
|
195 |
+
"heatmap": (heatmap_plot_pil, heatmap_plot_name)
|
196 |
+
}
|
197 |
+
|
198 |
+
zip_buffer = io.BytesIO()
|
199 |
+
with zipfile.ZipFile(zip_buffer, 'w') as zf:
|
200 |
+
zf.writestr("model_scores.csv", csv_data)
|
201 |
+
|
202 |
+
for name, (pil_image, filename) in plot_dict.items():
|
203 |
+
image_bytes = io.BytesIO()
|
204 |
+
pil_image.save(image_bytes, format='PNG')
|
205 |
+
image_bytes.seek(0)
|
206 |
+
zf.writestr(filename, image_bytes.read())
|
207 |
|
208 |
+
# Also try scraping each model for a YAML config
|
209 |
+
for model_name in df_full["Model Configuration"].to_list():
|
210 |
+
yaml_content = scrape_mergekit_config(model_name)
|
211 |
+
if ("No YAML configuration found" not in yaml_content) and ("Failed to fetch model page" not in yaml_content):
|
212 |
+
zf.writestr(f"{model_name.replace('/', '_')}_config.yaml", yaml_content.encode())
|
|
|
|
|
|
|
213 |
|
214 |
+
zip_buffer.seek(0)
|
215 |
+
return zip_buffer, "analysis_data.zip"
|
216 |
+
|
217 |
+
|
218 |
+
# --------------------------------------------------------------------
|
219 |
+
# PART 2: THE "NON-TINY BENCHMARKS" PARSER (from your snippet)
|
220 |
+
# --------------------------------------------------------------------
|
221 |
+
# We'll define the logic that prints out each model, attempts to scrape config, etc.
|
222 |
+
# Then we capture that printed output and return it as a string.
|
223 |
+
|
224 |
+
# Example "non-tiny" data, or reuse the snippet's data exactly:
|
225 |
+
non_tiny_benchmark_data = [
|
226 |
{
|
227 |
"rank": 44,
|
228 |
"name": "sometimesanotion/Qwen2.5-14B-Vimarckoso-v3",
|
|
|
235 |
"MUSR": 19.39,
|
236 |
"MMLU-PRO": 48.26
|
237 |
},
|
238 |
+
"hf_url": "https://huggingface.co/sometimesanotion/Qwen2.5-14B-Vimarckoso-v3",
|
239 |
"known_config": {
|
240 |
"models": [
|
241 |
{"model": "CultriX/SeQwence-14Bv1"},
|
|
|
249 |
}
|
250 |
}
|
251 |
},
|
252 |
+
# ... (include the rest of your non-tiny models from the snippet)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
]
|
254 |
|
255 |
+
def snippet_scrape_model_page(url):
|
256 |
+
"""
|
257 |
+
Same as scrape_model_page, but specifically for the snippet's logic if you want
|
258 |
+
them to remain separate. Alternatively, you can reuse the same 'scrape_model_page' above.
|
259 |
+
"""
|
260 |
+
# We'll just reuse the same function from above to avoid duplication:
|
261 |
+
return scrape_model_page(url)
|
262 |
|
263 |
def print_benchmark_and_config_info(model_info):
|
264 |
"""
|
265 |
+
Prints all info about the model: rank, scores, plus either a known config
|
266 |
+
or a scraped config. This is the logic from your snippet.
|
267 |
"""
|
268 |
print("---")
|
269 |
print(f"Model Rank: {model_info['rank']}")
|
|
|
277 |
print(f"Models average score in MMLU-PRO benchmarks in %: {model_info['scores']['MMLU-PRO']}")
|
278 |
|
279 |
if model_info["known_config"] is not None:
|
280 |
+
# Print known config in a simplistic YAML-like manner
|
281 |
print("###")
|
282 |
+
kc = model_info["known_config"]
|
283 |
+
if "models" in kc:
|
284 |
+
print("models:")
|
285 |
+
for m in kc["models"]:
|
286 |
+
print(f" - model: {m['model']}")
|
287 |
+
if "merge_method" in kc:
|
288 |
+
print(f"merge_method: {kc['merge_method']}")
|
289 |
+
if "base_model" in kc:
|
290 |
+
print(f"base_model: {kc['base_model']}")
|
291 |
+
if "dtype" in kc:
|
292 |
+
print(f"dtype: {kc['dtype']}")
|
293 |
+
if "parameters" in kc:
|
294 |
+
print("parameters:")
|
295 |
+
for pk, pv in kc["parameters"].items():
|
296 |
+
print(f" {pk}: {pv}")
|
297 |
print("###")
|
298 |
else:
|
299 |
+
# Attempt to scrape
|
300 |
+
scraped = snippet_scrape_model_page(model_info["hf_url"])
|
301 |
+
# If it's an error or "No YAML config", then print the snippet
|
302 |
+
if "No YAML configuration found." in scraped or "Error:" in scraped:
|
303 |
+
print("(No MergeKit configuration found.)\n")
|
304 |
+
print("You can try the following Python script to scrape the model page:\n")
|
305 |
+
print("#" * 70)
|
306 |
+
print(f'''import requests
|
307 |
from bs4 import BeautifulSoup
|
308 |
|
309 |
def scrape_model_page(model_url):
|
|
|
313 |
return f"Error: Unable to fetch the page (Status Code: {{response.status_code}})"
|
314 |
|
315 |
soup = BeautifulSoup(response.text, "html.parser")
|
|
|
316 |
yaml_config = soup.find("pre")
|
317 |
yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found."
|
|
|
318 |
metadata_section = soup.find("div", class_="metadata")
|
319 |
metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found."
|
320 |
|
|
|
327 |
return f"Error: {{str(e)}}"
|
328 |
|
329 |
if __name__ == "__main__":
|
330 |
+
model_url = "{model_info['hf_url']}"
|
331 |
result = scrape_model_page(model_url)
|
332 |
+
print(result)''')
|
333 |
+
print("#" * 70)
|
334 |
+
else:
|
335 |
+
print("###")
|
336 |
+
print(scraped)
|
337 |
+
print("###")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
|
339 |
+
def run_non_tiny_benchmarks():
|
340 |
"""
|
341 |
+
Runs the logic for all models in 'non_tiny_benchmark_data', capturing stdout
|
342 |
+
so we can return it as a single string for display in Gradio.
|
|
|
343 |
"""
|
344 |
old_stdout = sys.stdout
|
345 |
+
buffer = io.StringIO()
|
346 |
+
sys.stdout = buffer
|
347 |
|
348 |
+
# Loop through them all
|
349 |
+
for model in non_tiny_benchmark_data:
|
350 |
print_benchmark_and_config_info(model)
|
351 |
|
352 |
sys.stdout = old_stdout
|
353 |
+
return buffer.getvalue()
|
|
|
354 |
|
|
|
|
|
|
|
355 |
|
356 |
+
# --------------------------------------------------------------------
|
357 |
+
# PART 3: GRADIO APP (Your existing code, with one new button!)
|
358 |
+
# --------------------------------------------------------------------
|
|
|
|
|
|
|
359 |
|
360 |
with gr.Blocks() as demo:
|
361 |
+
gr.Markdown("# Comprehensive Model Performance Analysis with Hugging Face Links")
|
362 |
+
|
363 |
+
with gr.Row():
|
364 |
+
btn1 = gr.Button("Show Average Performance")
|
365 |
+
img1 = gr.Image(type="pil", label="Average Performance Plot")
|
366 |
+
img1_download = gr.File(label="Download Average Performance")
|
367 |
+
btn1.click(plot_average_scores, outputs=[img1, img1_download])
|
368 |
+
|
369 |
+
with gr.Row():
|
370 |
+
btn2 = gr.Button("Show Task Performance")
|
371 |
+
img2 = gr.Image(type="pil", label="Task Performance Plot")
|
372 |
+
img2_download = gr.File(label="Download Task Performance")
|
373 |
+
btn2.click(plot_task_performance, outputs=[img2, img2_download])
|
374 |
+
|
375 |
+
with gr.Row():
|
376 |
+
btn3 = gr.Button("Task-Specific Top Models")
|
377 |
+
img3 = gr.Image(type="pil", label="Task-Specific Top Models Plot")
|
378 |
+
img3_download = gr.File(label="Download Top Models")
|
379 |
+
btn3.click(plot_task_specific_top_models, outputs=[img3, img3_download])
|
380 |
+
|
381 |
+
with gr.Row():
|
382 |
+
btn4 = gr.Button("Plot Performance Heatmap")
|
383 |
+
heatmap_img = gr.Image(type="pil", label="Performance Heatmap")
|
384 |
+
heatmap_download = gr.File(label="Download Heatmap")
|
385 |
+
btn4.click(plot_heatmap, outputs=[heatmap_img, heatmap_download])
|
386 |
+
|
387 |
+
with gr.Row():
|
388 |
+
model_selector = gr.Dropdown(choices=df_full["Model Configuration"].tolist(), label="Select a Model")
|
389 |
+
with gr.Column():
|
390 |
+
scrape_btn = gr.Button("Scrape MergeKit Configuration")
|
391 |
+
yaml_output = gr.Textbox(lines=10, placeholder="YAML Configuration will appear here.")
|
392 |
+
scrape_btn.click(scrape_mergekit_config, inputs=model_selector, outputs=yaml_output)
|
393 |
+
with gr.Column():
|
394 |
+
save_yaml_btn = gr.Button("Save MergeKit Configuration")
|
395 |
+
yaml_download = gr.File(label="Download MergeKit Configuration")
|
396 |
+
save_yaml_btn.click(download_yaml, inputs=[yaml_output, model_selector], outputs=yaml_download)
|
397 |
+
|
398 |
+
with gr.Row():
|
399 |
+
download_all_btn = gr.Button("Download Everything")
|
400 |
+
all_downloads = gr.File(label="Download All Data")
|
401 |
+
download_all_btn.click(download_all_data, outputs=all_downloads)
|
402 |
+
|
403 |
+
gr.Markdown("## Live Scraping Features")
|
404 |
+
with gr.Row():
|
405 |
+
url_input = gr.Textbox(label="Enter Hugging Face Model URL", placeholder="https://huggingface.co/<model>")
|
406 |
+
live_scrape_btn = gr.Button("Scrape Model Page")
|
407 |
+
live_scrape_output = gr.Textbox(label="Scraped Data", lines=15)
|
408 |
+
live_scrape_btn.click(display_scraped_model_data, inputs=url_input, outputs=live_scrape_output)
|
409 |
+
|
410 |
+
# ----------------------------------------------------------------
|
411 |
+
# NEW: Button & Textbox for the "Non-Tiny Benchmarks" from the snippet
|
412 |
+
# ----------------------------------------------------------------
|
413 |
+
gr.Markdown("## Non-Tiny Benchmark Parser")
|
414 |
+
with gr.Row():
|
415 |
+
parse_non_tiny_btn = gr.Button("Parse Non-Tiny Benchmarks")
|
416 |
+
parse_non_tiny_output = gr.Textbox(label="Non-Tiny Benchmark Output", lines=30)
|
417 |
+
parse_non_tiny_btn.click(fn=run_non_tiny_benchmarks, outputs=parse_non_tiny_output)
|
418 |
|
419 |
demo.launch()
|