CultriX commited on
Commit
b2fd468
·
verified ·
1 Parent(s): 85e629e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +112 -23
app.py CHANGED
@@ -4,6 +4,9 @@ import seaborn as sns
4
  import gradio as gr
5
  import requests
6
  from bs4 import BeautifulSoup
 
 
 
7
 
8
  # Input data with links to Hugging Face repositories
9
  data_full = [
@@ -52,8 +55,14 @@ def plot_average_scores():
52
  plt.gca().invert_yaxis()
53
  plt.grid(axis='x', linestyle='--', alpha=0.7)
54
  plt.tight_layout()
55
- plt.savefig("average_performance.png")
56
- return "average_performance.png"
 
 
 
 
 
 
57
 
58
  def plot_task_performance():
59
  df_full_melted = df_full.melt(id_vars=["Model Configuration", "Model Link"], var_name="Task", value_name="Score")
@@ -70,8 +79,13 @@ def plot_task_performance():
70
  plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize=9)
71
  plt.grid(axis='y', linestyle='--', alpha=0.7)
72
  plt.tight_layout()
73
- plt.savefig("task_performance.png")
74
- return "task_performance.png"
 
 
 
 
 
75
 
76
  def plot_task_specific_top_models():
77
  top_models = df_full.iloc[:, 2:].idxmax()
@@ -86,8 +100,13 @@ def plot_task_specific_top_models():
86
  plt.ylabel("Score", fontsize=14)
87
  plt.grid(axis="y", linestyle="--", alpha=0.7)
88
  plt.tight_layout()
89
- plt.savefig("task_specific_top_models.png")
90
- return "task_specific_top_models.png"
 
 
 
 
 
91
 
92
  def scrape_mergekit_config(model_name):
93
  """
@@ -109,8 +128,62 @@ def plot_heatmap():
109
  sns.heatmap(df_full.iloc[:, 2:], annot=True, cmap="YlGnBu", xticklabels=columns[2:], yticklabels=df_full["Model Configuration"])
110
  plt.title("Performance Heatmap", fontsize=16)
111
  plt.tight_layout()
112
- plt.savefig("performance_heatmap.png")
113
- return "performance_heatmap.png"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114
 
115
  # Gradio app
116
  with gr.Blocks() as demo:
@@ -118,28 +191,44 @@ with gr.Blocks() as demo:
118
 
119
  with gr.Row():
120
  btn1 = gr.Button("Show Average Performance")
121
- img1 = gr.Image(type="filepath")
122
- btn1.click(plot_average_scores, outputs=img1)
123
-
 
124
  with gr.Row():
125
  btn2 = gr.Button("Show Task Performance")
126
- img2 = gr.Image(type="filepath")
127
- btn2.click(plot_task_performance, outputs=img2)
 
128
 
129
  with gr.Row():
130
  btn3 = gr.Button("Task-Specific Top Models")
131
- img3 = gr.Image(type="filepath")
132
- btn3.click(plot_task_specific_top_models, outputs=img3)
133
-
 
134
  with gr.Row():
135
- btn4 = gr.Button("Plot Performance Heatmap")
136
- heatmap_img = gr.Image(type="filepath")
137
- btn4.click(plot_heatmap, outputs=heatmap_img)
 
138
 
139
  with gr.Row():
140
  model_selector = gr.Dropdown(choices=df_full["Model Configuration"].tolist(), label="Select a Model")
141
- scrape_btn = gr.Button("Scrape MergeKit Configuration")
142
- yaml_output = gr.Textbox(lines=10, placeholder="YAML Configuration will appear here.")
143
- scrape_btn.click(scrape_mergekit_config, inputs=model_selector, outputs=yaml_output)
 
 
 
 
 
 
 
 
 
 
 
 
144
 
145
- demo.launch()
 
4
  import gradio as gr
5
  import requests
6
  from bs4 import BeautifulSoup
7
+ import io
8
+ import os
9
+ import base64
10
 
11
  # Input data with links to Hugging Face repositories
12
  data_full = [
 
55
  plt.gca().invert_yaxis()
56
  plt.grid(axis='x', linestyle='--', alpha=0.7)
57
  plt.tight_layout()
58
+
59
+ img_buffer = io.BytesIO()
60
+ plt.savefig(img_buffer, format='png')
61
+ img_buffer.seek(0)
62
+ img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
63
+ plt.close()
64
+ return img_base64, "average_performance.png"
65
+
66
 
67
  def plot_task_performance():
68
  df_full_melted = df_full.melt(id_vars=["Model Configuration", "Model Link"], var_name="Task", value_name="Score")
 
79
  plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize=9)
80
  plt.grid(axis='y', linestyle='--', alpha=0.7)
81
  plt.tight_layout()
82
+
83
+ img_buffer = io.BytesIO()
84
+ plt.savefig(img_buffer, format='png')
85
+ img_buffer.seek(0)
86
+ img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
87
+ plt.close()
88
+ return img_base64, "task_performance.png"
89
 
90
  def plot_task_specific_top_models():
91
  top_models = df_full.iloc[:, 2:].idxmax()
 
100
  plt.ylabel("Score", fontsize=14)
101
  plt.grid(axis="y", linestyle="--", alpha=0.7)
102
  plt.tight_layout()
103
+
104
+ img_buffer = io.BytesIO()
105
+ plt.savefig(img_buffer, format='png')
106
+ img_buffer.seek(0)
107
+ img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
108
+ plt.close()
109
+ return img_base64, "task_specific_top_models.png"
110
 
111
  def scrape_mergekit_config(model_name):
112
  """
 
128
  sns.heatmap(df_full.iloc[:, 2:], annot=True, cmap="YlGnBu", xticklabels=columns[2:], yticklabels=df_full["Model Configuration"])
129
  plt.title("Performance Heatmap", fontsize=16)
130
  plt.tight_layout()
131
+
132
+ img_buffer = io.BytesIO()
133
+ plt.savefig(img_buffer, format='png')
134
+ img_buffer.seek(0)
135
+ img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
136
+ plt.close()
137
+ return img_base64, "performance_heatmap.png"
138
+
139
+
140
+ def download_yaml(yaml_content, model_name):
141
+ """
142
+ Generates a downloadable link for the scraped YAML content.
143
+ """
144
+ if "No YAML configuration found" in yaml_content or "Failed to fetch model page" in yaml_content:
145
+ return None # Do not return a link if there's no config or a fetch error
146
+
147
+ filename = f"{model_name.replace('/', '_')}_config.yaml"
148
+ return gr.File(value=yaml_content.encode(), filename=filename)
149
+
150
+ def download_all_data():
151
+ # Prepare data to download
152
+ csv_buffer = io.StringIO()
153
+ df_full.to_csv(csv_buffer, index=False)
154
+ csv_data = csv_buffer.getvalue().encode('utf-8')
155
+
156
+ # Prepare all plots
157
+ average_plot_b64, average_plot_name = plot_average_scores()
158
+ task_plot_b64, task_plot_name = plot_task_performance()
159
+ top_models_plot_b64, top_models_plot_name = plot_task_specific_top_models()
160
+ heatmap_plot_b64, heatmap_plot_name = plot_heatmap()
161
+
162
+ plot_dict = {
163
+ "average_performance": (average_plot_b64, average_plot_name),
164
+ "task_performance": (task_plot_b64, task_plot_name),
165
+ "top_models": (top_models_plot_b64, top_models_plot_name),
166
+ "heatmap": (heatmap_plot_b64, heatmap_plot_name)
167
+ }
168
+
169
+ zip_buffer = io.BytesIO()
170
+ import zipfile
171
+ with zipfile.ZipFile(zip_buffer, 'w') as zf:
172
+ zf.writestr("model_scores.csv", csv_data)
173
+
174
+ for name, (b64, filename) in plot_dict.items():
175
+ img_data = base64.b64decode(b64)
176
+ zf.writestr(filename, img_data)
177
+
178
+ for model_name in df_full["Model Configuration"].to_list():
179
+ yaml_content = scrape_mergekit_config(model_name)
180
+ if "No YAML configuration found" not in yaml_content and "Failed to fetch model page" not in yaml_content:
181
+ zf.writestr(f"{model_name.replace('/', '_')}_config.yaml", yaml_content.encode())
182
+
183
+ zip_buffer.seek(0)
184
+
185
+ return zip_buffer, "analysis_data.zip"
186
+
187
 
188
  # Gradio app
189
  with gr.Blocks() as demo:
 
191
 
192
  with gr.Row():
193
  btn1 = gr.Button("Show Average Performance")
194
+ img1 = gr.Image(type="bytes", label="Average Performance Plot")
195
+ img1_download = gr.File(label="Download Average Performance")
196
+ btn1.click(plot_average_scores, outputs=[img1,img1_download])
197
+
198
  with gr.Row():
199
  btn2 = gr.Button("Show Task Performance")
200
+ img2 = gr.Image(type="bytes", label="Task Performance Plot")
201
+ img2_download = gr.File(label="Download Task Performance")
202
+ btn2.click(plot_task_performance, outputs=[img2, img2_download])
203
 
204
  with gr.Row():
205
  btn3 = gr.Button("Task-Specific Top Models")
206
+ img3 = gr.Image(type="bytes", label="Task-Specific Top Models Plot")
207
+ img3_download = gr.File(label="Download Top Models")
208
+ btn3.click(plot_task_specific_top_models, outputs=[img3, img3_download])
209
+
210
  with gr.Row():
211
+ btn4 = gr.Button("Plot Performance Heatmap")
212
+ heatmap_img = gr.Image(type="bytes", label="Performance Heatmap")
213
+ heatmap_download = gr.File(label="Download Heatmap")
214
+ btn4.click(plot_heatmap, outputs=[heatmap_img, heatmap_download])
215
 
216
  with gr.Row():
217
  model_selector = gr.Dropdown(choices=df_full["Model Configuration"].tolist(), label="Select a Model")
218
+ with gr.Column():
219
+ scrape_btn = gr.Button("Scrape MergeKit Configuration")
220
+ yaml_output = gr.Textbox(lines=10, placeholder="YAML Configuration will appear here.")
221
+ scrape_btn.click(scrape_mergekit_config, inputs=model_selector, outputs=yaml_output)
222
+ with gr.Column():
223
+ save_yaml_btn = gr.Button("Save MergeKit Configuration")
224
+ yaml_download = gr.File(label="Download MergeKit Configuration")
225
+ save_yaml_btn.click(download_yaml, inputs=[yaml_output, model_selector], outputs=yaml_download)
226
+
227
+
228
+ with gr.Row():
229
+ download_all_btn = gr.Button("Download Everything")
230
+ all_downloads = gr.File(label="Download All Data")
231
+ download_all_btn.click(download_all_data, outputs=all_downloads)
232
+
233
 
234
+ demo.launch()