File size: 36,431 Bytes
9c8a2cf
8cb6f0a
04bb535
 
 
 
 
 
 
 
 
 
 
9c8a2cf
 
04bb535
 
 
 
 
 
 
9c8a2cf
04bb535
 
 
 
 
 
 
 
9c8a2cf
 
04bb535
46a80fc
 
 
 
04bb535
 
 
 
 
88569fc
04bb535
 
bb84a07
46a80fc
2f7060f
04bb535
 
 
 
 
 
 
 
 
 
 
 
8cb6f0a
661887e
e085921
 
9c8a2cf
e085921
04bb535
 
 
 
9c8a2cf
 
 
 
04bb535
9c8a2cf
04bb535
2f7060f
9c8a2cf
 
04bb535
9c8a2cf
04bb535
 
9c8a2cf
04bb535
 
 
 
 
 
e085921
 
 
 
67a7810
c5ad2a2
 
e085921
661887e
e085921
 
661887e
 
 
 
 
e085921
 
 
04bb535
8cb6f0a
04bb535
2f7060f
04bb535
9c8a2cf
04bb535
2f7060f
04bb535
2f7060f
04bb535
9c8a2cf
04bb535
 
8cb6f0a
04bb535
 
e085921
661887e
a70fb66
 
 
 
 
c5ad2a2
2f7060f
a70fb66
bb84a07
a70fb66
bb84a07
67a7810
a70fb66
 
 
67a7810
a70fb66
2f7060f
a70fb66
67a7810
a70fb66
 
 
67a7810
2f7060f
67a7810
a70fb66
 
 
67a7810
 
a70fb66
67a7810
a70fb66
67a7810
 
bb84a07
036e058
e085921
9c8a2cf
2f7060f
46a80fc
04bb535
 
 
 
 
661887e
2f7060f
fe51424
 
04bb535
 
2f7060f
04bb535
 
67a7810
c5ad2a2
2f7060f
c5ad2a2
 
2f7060f
 
 
c5ad2a2
67a7810
 
 
c5ad2a2
 
2f7060f
04bb535
 
 
2f7060f
 
67a7810
04bb535
 
 
e085921
2f7060f
a4dd810
 
 
2f7060f
a4dd810
 
2f7060f
a4dd810
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f7060f
a4dd810
 
 
 
 
 
2f7060f
e085921
 
04bb535
 
 
2f7060f
e085921
 
04bb535
e085921
 
 
 
 
 
04bb535
2f7060f
 
e085921
 
04bb535
e085921
f03b779
 
 
 
04bb535
f03b779
 
 
 
 
04bb535
 
 
 
 
 
 
 
f03b779
 
04bb535
 
 
f03b779
04bb535
 
 
 
f03b779
04bb535
 
 
 
f03b779
 
04bb535
 
 
 
 
 
 
 
 
 
 
f03b779
 
04bb535
 
 
 
 
2f7060f
04bb535
2f7060f
04bb535
 
 
 
 
 
 
2f7060f
04bb535
 
 
 
 
 
 
 
 
f03b779
e085921
04bb535
 
 
e085921
fe51424
661887e
 
036e058
 
04bb535
 
 
2f7060f
036e058
 
661887e
036e058
04bb535
036e058
2f7060f
04bb535
 
 
2f7060f
e085921
04bb535
 
 
 
2f7060f
04bb535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eddb57d
 
04bb535
 
 
 
 
 
 
 
eddb57d
 
 
04bb535
 
 
eddb57d
fe51424
04bb535
 
eddb57d
e085921
661887e
036e058
 
661887e
 
04bb535
036e058
2f7060f
04bb535
661887e
 
2f7060f
bb84a07
 
 
 
 
 
 
2f7060f
bb84a07
 
 
 
 
 
 
2f7060f
a70fb66
 
 
2f7060f
bb84a07
2f7060f
c5ad2a2
 
 
 
2f7060f
c5ad2a2
67a7810
c5ad2a2
 
 
 
 
 
 
2f7060f
c5ad2a2
67a7810
2f7060f
67a7810
 
 
 
2f7060f
67a7810
 
 
 
2f7060f
67a7810
c5ad2a2
2f7060f
c5ad2a2
2f7060f
67a7810
 
 
2f7060f
67a7810
 
 
2f7060f
67a7810
 
2f7060f
67a7810
2f7060f
67a7810
 
 
 
 
 
 
 
 
 
 
 
2f7060f
67a7810
 
 
2f7060f
 
 
67a7810
 
 
2f7060f
67a7810
 
 
 
2f7060f
67a7810
 
 
2f7060f
67a7810
 
 
2f7060f
67a7810
 
2f7060f
67a7810
2f7060f
67a7810
 
 
 
 
 
 
 
 
2f7060f
bb84a07
 
 
 
 
2f7060f
46a80fc
 
 
2f7060f
46a80fc
 
2f7060f
46a80fc
 
2f7060f
46a80fc
 
 
 
 
c0eb848
 
 
46a80fc
c0eb848
46a80fc
2f7060f
46a80fc
 
c0eb848
46a80fc
 
 
88569fc
 
46a80fc
88569fc
 
c0eb848
88569fc
 
 
 
c0eb848
2f7060f
88569fc
c0eb848
88569fc
 
 
c0eb848
2f7060f
88569fc
c0eb848
88569fc
46a80fc
 
c0eb848
46a80fc
c0eb848
 
 
 
c5def88
c0eb848
 
 
c5def88
46a80fc
c0eb848
2f7060f
 
c5def88
c0eb848
2f7060f
c5def88
2f7060f
 
c5def88
 
46a80fc
 
c0eb848
46a80fc
 
 
 
c0eb848
46a80fc
 
 
 
 
 
 
2f7060f
46a80fc
 
 
 
2f7060f
c0eb848
46a80fc
c0eb848
46a80fc
 
c5def88
 
46a80fc
 
 
dcaa43d
c5def88
 
 
 
 
 
 
 
 
 
46a80fc
c5def88
2f7060f
 
 
 
c5def88
46a80fc
 
 
 
 
 
 
 
c5def88
46a80fc
 
 
 
c5def88
46a80fc
 
c5def88
 
 
 
c0eb848
46a80fc
 
c5def88
46a80fc
c5def88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f7060f
46a80fc
 
c0eb848
 
c5def88
46a80fc
c0eb848
2f7060f
c5def88
46a80fc
c5def88
dcaa43d
 
 
 
 
 
 
 
 
 
2f7060f
c0eb848
 
 
2f7060f
dcaa43d
 
2f7060f
46a80fc
 
 
 
dcaa43d
 
88569fc
46a80fc
 
2f7060f
46a80fc
c0eb848
 
c5def88
 
 
 
 
 
 
 
46a80fc
 
c5def88
46a80fc
 
 
 
 
 
 
 
 
 
 
 
 
 
6396296
46a80fc
2f7060f
46a80fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f7060f
f177a42
46a80fc
b9d1c73
 
 
2f7060f
b9d1c73
 
 
2f7060f
b9d1c73
2f7060f
 
77b8455
2f7060f
77b8455
 
 
 
 
b9d1c73
 
46a80fc
 
 
2f7060f
f177a42
 
 
 
 
 
 
46a80fc
661887e
f177a42
04bb535
 
 
 
2f7060f
9c8a2cf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
# Set cache directories first, before other imports
import os
import sys
import logging
import traceback

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger("speech_api")

# Set all cache directories to locations within /tmp
cache_dirs = {
    "HF_HOME": "/tmp/hf_home",
    "TRANSFORMERS_CACHE": "/tmp/transformers_cache",
    "HUGGINGFACE_HUB_CACHE": "/tmp/huggingface_hub_cache",
    "TORCH_HOME": "/tmp/torch_home",
    "XDG_CACHE_HOME": "/tmp/xdg_cache"
}

# Set environment variables and create directories
for env_var, path in cache_dirs.items():
    os.environ[env_var] = path
    try:
        os.makedirs(path, exist_ok=True)
        logger.info(f"πŸ“ Created cache directory: {path}")
    except Exception as e:
        logger.error(f"❌ Failed to create directory {path}: {str(e)}")

# Now import the rest of the libraries
try:
    import librosa
    from difflib import SequenceMatcher
    import glob
    import numpy as np
    import torch
    from pydub import AudioSegment
    import tempfile
    import torchaudio
    import soundfile as sf
    from flask import Flask, request, jsonify, send_file, g
    from flask_cors import CORS
    from transformers import Wav2Vec2ForCTC, AutoProcessor, VitsModel, AutoTokenizer
    from transformers import MarianMTModel, MarianTokenizer
    from werkzeug.utils import secure_filename

    logger.info("βœ… All required libraries imported successfully")
except ImportError as e:
    logger.critical(f"❌ Failed to import necessary libraries: {str(e)}")
    sys.exit(1)

# Check CUDA availability
if torch.cuda.is_available():
    logger.info(f"πŸš€ CUDA available: {torch.cuda.get_device_name(0)}")
    device = "cuda"
else:
    logger.info("⚠️ CUDA not available, using CPU")
    device = "cpu"

app = Flask(__name__)
CORS(app)

# ASR Model
ASR_MODEL_ID = "Coco-18/mms-asr-tgl-en-safetensor"
logger.info(f"πŸ”„ Loading ASR model: {ASR_MODEL_ID}")

asr_processor = None
asr_model = None

try:
    asr_processor = AutoProcessor.from_pretrained(
        ASR_MODEL_ID,
        cache_dir=cache_dirs["TRANSFORMERS_CACHE"]
    )
    logger.info("βœ… ASR processor loaded successfully")

    asr_model = Wav2Vec2ForCTC.from_pretrained(
        ASR_MODEL_ID,
        cache_dir=cache_dirs["TRANSFORMERS_CACHE"]
    )
    asr_model.to(device)
    logger.info(f"βœ… ASR model loaded successfully on {device}")
except Exception as e:
    logger.error(f"❌ Error loading ASR model: {str(e)}")
    logger.debug(f"Stack trace: {traceback.format_exc()}")
    logger.debug(f"Python version: {sys.version}")
    logger.debug(f"Current working directory: {os.getcwd()}")
    logger.debug(f"Temp directory exists: {os.path.exists('/tmp')}")
    logger.debug(f"Temp directory writeable: {os.access('/tmp', os.W_OK)}")

# Language-specific configurations
LANGUAGE_CODES = {
    "kapampangan": "pam",
    "filipino": "fil",  # Replaced tagalog with filipino
    "english": "eng",
    "tagalog": "tgl",
}

# TTS Models (Kapampangan, Tagalog, English)
TTS_MODELS = {
    "kapampangan": "facebook/mms-tts-pam",
    "tagalog": "facebook/mms-tts-tgl",
    "english": "facebook/mms-tts-eng"
}

tts_models = {}
tts_processors = {}
for lang, model_id in TTS_MODELS.items():
    logger.info(f"πŸ”„ Loading TTS model for {lang}: {model_id}")
    try:
        tts_processors[lang] = AutoTokenizer.from_pretrained(
            model_id,
            cache_dir=cache_dirs["TRANSFORMERS_CACHE"]
        )
        logger.info(f"βœ… {lang} TTS processor loaded")

        tts_models[lang] = VitsModel.from_pretrained(
            model_id,
            cache_dir=cache_dirs["TRANSFORMERS_CACHE"]
        )
        tts_models[lang].to(device)
        logger.info(f"βœ… {lang} TTS model loaded on {device}")
    except Exception as e:
        logger.error(f"❌ Failed to load {lang} TTS model: {str(e)}")
        logger.debug(f"Stack trace: {traceback.format_exc()}")
        tts_models[lang] = None

# Replace the single translation model with a dictionary of models
TRANSLATION_MODELS = {
    "pam-eng": "Coco-18/opus-mt-pam-en",
    "eng-pam": "Coco-18/opus-mt-en-pam",
    "tgl-eng": "Helsinki-NLP/opus-mt-tl-en",
    "eng-tgl": "Helsinki-NLP/opus-mt-en-tl",
    "phi": "Coco-18/opus-mt-phi"
}

logger.info(f"πŸ”„ Loading Translation model: {TRANSLATION_MODELS}")

# Initialize translation models and tokenizers
translation_models = {}
translation_tokenizers = {}

for model_key, model_id in TRANSLATION_MODELS.items():
    logger.info(f"πŸ”„ Loading Translation model: {model_id}")

    try:
        translation_tokenizers[model_key] = MarianTokenizer.from_pretrained(
            model_id,
            cache_dir=cache_dirs["TRANSFORMERS_CACHE"]
        )
        logger.info(f"βœ… Translation tokenizer loaded successfully for {model_key}")

        translation_models[model_key] = MarianMTModel.from_pretrained(
            model_id,
            cache_dir=cache_dirs["TRANSFORMERS_CACHE"]
        )
        translation_models[model_key].to(device)
        logger.info(f"βœ… Translation model loaded successfully on {device} for {model_key}")
    except Exception as e:
        logger.error(f"❌ Error loading Translation model for {model_key}: {str(e)}")
        logger.debug(f"Stack trace: {traceback.format_exc()}")
        translation_models[model_key] = None
        translation_tokenizers[model_key] = None

# Constants
SAMPLE_RATE = 16000
OUTPUT_DIR = "/tmp/audio_outputs"
REFERENCE_AUDIO_DIR = "./reference_audios"

try:
    os.makedirs(OUTPUT_DIR, exist_ok=True)
    logger.info(f"πŸ“ Created output directory: {OUTPUT_DIR}")
except Exception as e:
    logger.error(f"❌ Failed to create output directory: {str(e)}")


@app.route("/", methods=["GET"])
def home():
    return jsonify({"message": "Speech API is running", "status": "active"})


@app.route("/health", methods=["GET"])
def health_check():
    # Initialize direct language pair statuses based on loaded models
    translation_status = {}

    # Add status for direct model pairs
    for lang_pair in ["pam-eng", "eng-pam", "tgl-eng", "eng-tgl"]:
        translation_status[lang_pair] = "loaded" if lang_pair in translation_models and translation_models[
            lang_pair] is not None else "failed"

    # Add special phi model status
    phi_status = "loaded" if "phi" in translation_models and translation_models["phi"] is not None else "failed"
    translation_status["pam-fil"] = phi_status
    translation_status["fil-pam"] = phi_status
    translation_status["pam-tgl"] = phi_status  # Using phi model but replacing tgl with fil
    translation_status["tgl-pam"] = phi_status  # Using phi model but replacing tgl with fil

    health_status = {
        "api_status": "online",
        "asr_model": "loaded" if asr_model is not None else "failed",
        "tts_models": {lang: "loaded" if model is not None else "failed"
                       for lang, model in tts_models.items()},
        "translation_models": translation_status,
        "device": device
    }
    return jsonify(health_status)


@app.route("/check_references", methods=["GET"])
def check_references():
    """Endpoint to check if reference files exist and are accessible"""
    ref_patterns = ["mayap_a_abak", "mayap_a_ugtu", "mayap_a_gatpanapun",
                    "mayap_a_bengi", "komusta_ka"]
    results = {}

    for pattern in ref_patterns:
        pattern_dir = os.path.join(REFERENCE_AUDIO_DIR, pattern)
        if os.path.exists(pattern_dir):
            wav_files = glob.glob(os.path.join(pattern_dir, "*.wav"))
            results[pattern] = {
                "exists": True,
                "path": pattern_dir,
                "file_count": len(wav_files),
                "files": [os.path.basename(f) for f in wav_files]
            }
        else:
            results[pattern] = {
                "exists": False,
                "path": pattern_dir
            }

    return jsonify({
        "reference_audio_dir": REFERENCE_AUDIO_DIR,
        "directory_exists": os.path.exists(REFERENCE_AUDIO_DIR),
        "patterns": results
    })


@app.route("/asr", methods=["POST"])
def transcribe_audio():
    if asr_model is None or asr_processor is None:
        logger.error("❌ ASR endpoint called but models aren't loaded")
        return jsonify({"error": "ASR model not available"}), 503

    try:
        if "audio" not in request.files:
            logger.warning("⚠️ ASR request missing audio file")
            return jsonify({"error": "No audio file uploaded"}), 400

        audio_file = request.files["audio"]
        language = request.form.get("language", "english").lower()

        if language not in LANGUAGE_CODES:
            logger.warning(f"⚠️ Unsupported language requested: {language}")
            return jsonify(
                {"error": f"Unsupported language: {language}. Available: {list(LANGUAGE_CODES.keys())}"}), 400

        lang_code = LANGUAGE_CODES[language]
        logger.info(f"πŸ”„ Processing {language} audio for ASR")

        # Save the uploaded file temporarily
        with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(audio_file.filename)[-1]) as temp_audio:
            temp_audio.write(audio_file.read())
            temp_audio_path = temp_audio.name
            logger.debug(f"πŸ“ Temporary audio saved to {temp_audio_path}")

        # Convert to WAV if necessary
        wav_path = temp_audio_path
        if not audio_file.filename.lower().endswith(".wav"):
            wav_path = os.path.join(OUTPUT_DIR, "converted_audio.wav")
            logger.info(f"πŸ”„ Converting audio to WAV format: {wav_path}")
            try:
                audio = AudioSegment.from_file(temp_audio_path)
                audio = audio.set_frame_rate(SAMPLE_RATE).set_channels(1)
                audio.export(wav_path, format="wav")
            except Exception as e:
                logger.error(f"❌ Audio conversion failed: {str(e)}")
                return jsonify({"error": f"Audio conversion failed: {str(e)}"}), 500

        # Load and process the WAV file
        try:
            waveform, sr = torchaudio.load(wav_path)
            logger.debug(f"βœ… Audio loaded: {wav_path} (Sample rate: {sr}Hz)")

            # Resample if needed
            if sr != SAMPLE_RATE:
                logger.info(f"πŸ”„ Resampling audio from {sr}Hz to {SAMPLE_RATE}Hz")
                waveform = torchaudio.transforms.Resample(sr, SAMPLE_RATE)(waveform)

            waveform = waveform / torch.max(torch.abs(waveform))
        except Exception as e:
            logger.error(f"❌ Failed to load or process audio: {str(e)}")
            return jsonify({"error": f"Audio processing failed: {str(e)}"}), 500

        # Process audio for ASR
        try:
            inputs = asr_processor(
                waveform.squeeze().numpy(),
                sampling_rate=SAMPLE_RATE,
                return_tensors="pt",
                language=lang_code
            )
            inputs = {k: v.to(device) for k, v in inputs.items()}
        except Exception as e:
            logger.error(f"❌ ASR preprocessing failed: {str(e)}")
            return jsonify({"error": f"ASR preprocessing failed: {str(e)}"}), 500

        # Perform ASR
        try:
            with torch.no_grad():
                logits = asr_model(**inputs).logits
            ids = torch.argmax(logits, dim=-1)[0]
            transcription = asr_processor.decode(ids)

            logger.info(f"βœ… Transcription ({language}): {transcription}")

            # Clean up temp files
            try:
                os.unlink(temp_audio_path)
                if wav_path != temp_audio_path:
                    os.unlink(wav_path)
            except Exception as e:
                logger.warning(f"⚠️ Failed to clean up temp files: {str(e)}")

            return jsonify({
                "transcription": transcription,
                "language": language,
                "language_code": lang_code
            })
        except Exception as e:
            logger.error(f"❌ ASR inference failed: {str(e)}")
            logger.debug(f"Stack trace: {traceback.format_exc()}")
            return jsonify({"error": f"ASR inference failed: {str(e)}"}), 500

    except Exception as e:
        logger.error(f"❌ Unhandled exception in ASR endpoint: {str(e)}")
        logger.debug(f"Stack trace: {traceback.format_exc()}")
        return jsonify({"error": f"Internal server error: {str(e)}"}), 500


@app.route("/tts", methods=["POST"])
def generate_tts():
    try:
        data = request.get_json()
        if not data:
            logger.warning("⚠️ TTS endpoint called with no JSON data")
            return jsonify({"error": "No JSON data provided"}), 400

        text_input = data.get("text", "").strip()
        language = data.get("language", "kapampangan").lower()

        if not text_input:
            logger.warning("⚠️ TTS request with empty text")
            return jsonify({"error": "No text provided"}), 400

        if language not in TTS_MODELS:
            logger.warning(f"⚠️ TTS requested for unsupported language: {language}")
            return jsonify({"error": f"Invalid language. Available options: {list(TTS_MODELS.keys())}"}), 400

        if tts_models[language] is None:
            logger.error(f"❌ TTS model for {language} not loaded")
            return jsonify({"error": f"TTS model for {language} not available"}), 503

        logger.info(f"πŸ”„ Generating TTS for language: {language}, text: '{text_input}'")

        try:
            processor = tts_processors[language]
            model = tts_models[language]
            inputs = processor(text_input, return_tensors="pt")
            inputs = {k: v.to(device) for k, v in inputs.items()}
        except Exception as e:
            logger.error(f"❌ TTS preprocessing failed: {str(e)}")
            return jsonify({"error": f"TTS preprocessing failed: {str(e)}"}), 500

        # Generate speech
        try:
            with torch.no_grad():
                output = model(**inputs).waveform
                waveform = output.squeeze().cpu().numpy()
        except Exception as e:
            logger.error(f"❌ TTS inference failed: {str(e)}")
            logger.debug(f"Stack trace: {traceback.format_exc()}")
            return jsonify({"error": f"TTS inference failed: {str(e)}"}), 500

        # Save to file
        try:
            output_filename = os.path.join(OUTPUT_DIR, f"{language}_output.wav")
            sampling_rate = model.config.sampling_rate
            sf.write(output_filename, waveform, sampling_rate)
            logger.info(f"βœ… Speech generated! File saved: {output_filename}")
        except Exception as e:
            logger.error(f"❌ Failed to save audio file: {str(e)}")
            return jsonify({"error": f"Failed to save audio file: {str(e)}"}), 500

        return jsonify({
            "message": "TTS audio generated",
            "file_url": f"/download/{os.path.basename(output_filename)}",
            "language": language,
            "text_length": len(text_input)
        })
    except Exception as e:
        logger.error(f"❌ Unhandled exception in TTS endpoint: {str(e)}")
        logger.debug(f"Stack trace: {traceback.format_exc()}")
        return jsonify({"error": f"Internal server error: {str(e)}"}), 500


@app.route("/download/<filename>", methods=["GET"])
def download_audio(filename):
    file_path = os.path.join(OUTPUT_DIR, filename)
    if os.path.exists(file_path):
        logger.info(f"πŸ“€ Serving audio file: {file_path}")
        return send_file(file_path, mimetype="audio/wav", as_attachment=True)

    logger.warning(f"⚠️ Requested file not found: {file_path}")
    return jsonify({"error": "File not found"}), 404


@app.route("/translate", methods=["POST"])
def translate_text():
    try:
        data = request.get_json()
        if not data:
            logger.warning("⚠️ Translation endpoint called with no JSON data")
            return jsonify({"error": "No JSON data provided"}), 400

        source_text = data.get("text", "").strip()
        source_language = data.get("source_language", "").lower()
        target_language = data.get("target_language", "").lower()

        if not source_text:
            logger.warning("⚠️ Translation request with empty text")
            return jsonify({"error": "No text provided"}), 400

        # Map language names to codes
        source_code = LANGUAGE_CODES.get(source_language, source_language)
        target_code = LANGUAGE_CODES.get(target_language, target_language)

        logger.info(f"πŸ”„ Translating from {source_language} to {target_language}: '{source_text}'")

        # Special handling for pam-fil, fil-pam, pam-tgl and tgl-pam using the phi model
        use_phi_model = False
        actual_source_code = source_code
        actual_target_code = target_code

        # Check if we need to use the phi model with fil replacement
        if (source_code == "pam" and target_code == "fil") or (source_code == "fil" and target_code == "pam"):
            use_phi_model = True
        elif (source_code == "pam" and target_code == "tgl"):
            use_phi_model = True
            actual_target_code = "fil"  # Replace tgl with fil for the phi model
        elif (source_code == "tgl" and target_code == "pam"):
            use_phi_model = True
            actual_source_code = "fil"  # Replace tgl with fil for the phi model

        if use_phi_model:
            model_key = "phi"

            # Check if we have the phi model
            if model_key not in translation_models or translation_models[model_key] is None:
                logger.error(f"❌ Translation model for {model_key} not loaded")
                return jsonify({"error": f"Translation model not available"}), 503

            try:
                # Get the phi model and tokenizer
                model = translation_models[model_key]
                tokenizer = translation_tokenizers[model_key]

                # Prepend target language token to input
                input_text = f">>{actual_target_code}<< {source_text}"

                logger.info(f"πŸ”„ Using phi model with input: '{input_text}'")

                # Tokenize the text
                tokenized = tokenizer(input_text, return_tensors="pt", padding=True)
                tokenized = {k: v.to(device) for k, v in tokenized.items()}

                # Generate translation
                with torch.no_grad():
                    translated = model.generate(**tokenized)

                # Decode the translation
                result = tokenizer.decode(translated[0], skip_special_tokens=True)

                logger.info(f"βœ… Translation result: '{result}'")

                return jsonify({
                    "translated_text": result,
                    "source_language": source_language,
                    "target_language": target_language
                })
            except Exception as e:
                logger.error(f"❌ Translation processing failed: {str(e)}")
                logger.debug(f"Stack trace: {traceback.format_exc()}")
                return jsonify({"error": f"Translation processing failed: {str(e)}"}), 500
        else:
            # Create the regular language pair key for other language pairs
            lang_pair = f"{source_code}-{target_code}"

            # Check if we have a model for this language pair
            if lang_pair not in translation_models:
                logger.warning(f"⚠️ No translation model available for {lang_pair}")
                return jsonify(
                    {"error": f"Translation from {source_language} to {target_language} is not supported yet"}), 400

            if translation_models[lang_pair] is None or translation_tokenizers[lang_pair] is None:
                logger.error(f"❌ Translation model for {lang_pair} not loaded")
                return jsonify({"error": f"Translation model not available"}), 503

            try:
                # Regular translation process for other language pairs
                model = translation_models[lang_pair]
                tokenizer = translation_tokenizers[lang_pair]

                # Tokenize the text
                tokenized = tokenizer(source_text, return_tensors="pt", padding=True)
                tokenized = {k: v.to(device) for k, v in tokenized.items()}

                # Generate translation
                with torch.no_grad():
                    translated = model.generate(**tokenized)

                # Decode the translation
                result = tokenizer.decode(translated[0], skip_special_tokens=True)

                logger.info(f"βœ… Translation result: '{result}'")

                return jsonify({
                    "translated_text": result,
                    "source_language": source_language,
                    "target_language": target_language
                })
            except Exception as e:
                logger.error(f"❌ Translation processing failed: {str(e)}")
                logger.debug(f"Stack trace: {traceback.format_exc()}")
                return jsonify({"error": f"Translation processing failed: {str(e)}"}), 500

    except Exception as e:
        logger.error(f"❌ Unhandled exception in translation endpoint: {str(e)}")
        logger.debug(f"Stack trace: {traceback.format_exc()}")
        return jsonify({"error": f"Internal server error: {str(e)}"}), 500


# Add this function to your app.py
def calculate_similarity(text1, text2):
    """Calculate text similarity percentage."""

    def clean_text(text):
        return text.lower()

    clean1 = clean_text(text1)
    clean2 = clean_text(text2)

    matcher = SequenceMatcher(None, clean1, clean2)
    return matcher.ratio() * 100

@app.route("/evaluate", methods=["POST"])
def evaluate_pronunciation():
    request_id = f"req-{id(request)}"  # Create unique ID for this request
    logger.info(f"[{request_id}] πŸ†• Starting new pronunciation evaluation request")
    
    if asr_model is None or asr_processor is None:
        logger.error(f"[{request_id}] ❌ Evaluation endpoint called but ASR models aren't loaded")
        return jsonify({"error": "ASR model not available"}), 503

    try:
        if "audio" not in request.files:
            logger.warning(f"[{request_id}] ⚠️ Evaluation request missing audio file")
            return jsonify({"error": "No audio file uploaded"}), 400

        audio_file = request.files["audio"]
        reference_locator = request.form.get("reference_locator", "").strip()
        language = request.form.get("language", "kapampangan").lower()

        # Validate reference locator
        if not reference_locator:
            logger.warning(f"[{request_id}] ⚠️ No reference locator provided")
            return jsonify({"error": "Reference locator is required"}), 400

        # Construct full reference directory path
        reference_dir = os.path.join(REFERENCE_AUDIO_DIR, reference_locator)
        logger.info(f"[{request_id}] πŸ“ Reference directory path: {reference_dir}")

        if not os.path.exists(reference_dir):
            logger.warning(f"[{request_id}] ⚠️ Reference directory not found: {reference_dir}")
            return jsonify({"error": f"Reference audio directory not found: {reference_locator}"}), 404

        reference_files = glob.glob(os.path.join(reference_dir, "*.wav"))
        logger.info(f"[{request_id}] πŸ“ Found {len(reference_files)} reference files")

        if not reference_files:
            logger.warning(f"[{request_id}] ⚠️ No reference audio files found in {reference_dir}")
            return jsonify({"error": f"No reference audio found for {reference_locator}"}), 404

        lang_code = LANGUAGE_CODES.get(language, language)
        logger.info(f"[{request_id}] πŸ”„ Evaluating pronunciation for reference: {reference_locator} with language code: {lang_code}")

        # Create a request-specific temp directory to avoid conflicts
        temp_dir = os.path.join(OUTPUT_DIR, f"temp_{request_id}")
        os.makedirs(temp_dir, exist_ok=True)
        
        # Process user audio
        user_audio_path = os.path.join(temp_dir, "user_audio_input.wav")
        with open(user_audio_path, 'wb') as f:
            f.write(audio_file.read())
        
        try:
            logger.info(f"[{request_id}] πŸ”„ Processing user audio file")
            audio = AudioSegment.from_file(user_audio_path)
            audio = audio.set_frame_rate(SAMPLE_RATE).set_channels(1)
            
            processed_path = os.path.join(temp_dir, "processed_user_audio.wav")
            audio.export(processed_path, format="wav")
            
            user_waveform, sr = torchaudio.load(processed_path)
            user_waveform = user_waveform.squeeze().numpy()
            logger.info(f"[{request_id}] βœ… User audio processed: {sr}Hz, length: {len(user_waveform)} samples")
            
            user_audio_path = processed_path
        except Exception as e:
            logger.error(f"[{request_id}] ❌ Audio processing failed: {str(e)}")
            return jsonify({"error": f"Audio processing failed: {str(e)}"}), 500

        # Transcribe user audio
        try:
            logger.info(f"[{request_id}] πŸ”„ Transcribing user audio")
            inputs = asr_processor(
                user_waveform,
                sampling_rate=SAMPLE_RATE,
                return_tensors="pt",
                language=lang_code
            )
            inputs = {k: v.to(device) for k, v in inputs.items()}

            with torch.no_grad():
                logits = asr_model(**inputs).logits
            ids = torch.argmax(logits, dim=-1)[0]
            user_transcription = asr_processor.decode(ids)

            logger.info(f"[{request_id}] βœ… User transcription: '{user_transcription}'")
        except Exception as e:
            logger.error(f"[{request_id}] ❌ ASR inference failed: {str(e)}")
            return jsonify({"error": f"ASR inference failed: {str(e)}"}), 500

        # Process reference files in batches
        batch_size = 2  # Process 2 files at a time - adjust based on your hardware
        results = []
        best_score = 0
        best_reference = None
        best_transcription = None
        
        # Use this if you want to limit the number of files to process
        max_files_to_check = min(5, len(reference_files))  # Check at most 5 files
        reference_files = reference_files[:max_files_to_check]
        
        logger.info(f"[{request_id}] πŸ”„ Processing {len(reference_files)} reference files in batches of {batch_size}")
        
        # Function to process a single reference file
        def process_reference_file(ref_file):
            ref_filename = os.path.basename(ref_file)
            try:
                # Load and resample reference audio
                ref_waveform, ref_sr = torchaudio.load(ref_file)
                if ref_sr != SAMPLE_RATE:
                    ref_waveform = torchaudio.transforms.Resample(ref_sr, SAMPLE_RATE)(ref_waveform)
                ref_waveform = ref_waveform.squeeze().numpy()
                
                # Transcribe reference audio
                inputs = asr_processor(
                    ref_waveform,
                    sampling_rate=SAMPLE_RATE,
                    return_tensors="pt",
                    language=lang_code
                )
                inputs = {k: v.to(device) for k, v in inputs.items()}
                
                with torch.no_grad():
                    logits = asr_model(**inputs).logits
                ids = torch.argmax(logits, dim=-1)[0]
                ref_transcription = asr_processor.decode(ids)
                
                # Calculate similarity
                similarity = calculate_similarity(user_transcription, ref_transcription)
                
                logger.info(f"[{request_id}] πŸ“Š Similarity with {ref_filename}: {similarity:.2f}%, transcription: '{ref_transcription}'")
                
                return {
                    "reference_file": ref_filename,
                    "reference_text": ref_transcription,
                    "similarity_score": similarity
                }
            except Exception as e:
                logger.error(f"[{request_id}] ❌ Error processing {ref_filename}: {str(e)}")
                return {
                    "reference_file": ref_filename,
                    "reference_text": "Error",
                    "similarity_score": 0,
                    "error": str(e)
                }
        
        # Process files in batches using ThreadPoolExecutor
        from concurrent.futures import ThreadPoolExecutor
        
        with ThreadPoolExecutor(max_workers=batch_size) as executor:
            batch_results = list(executor.map(process_reference_file, reference_files))
            results.extend(batch_results)
            
            # Find the best result
            for result in batch_results:
                if result["similarity_score"] > best_score:
                    best_score = result["similarity_score"]
                    best_reference = result["reference_file"]
                    best_transcription = result["reference_text"]
                    
                    # Exit early if we found a very good match (optional)
                    if best_score > 80.0:
                        logger.info(f"[{request_id}] 🏁 Found excellent match: {best_score:.2f}%")
                        break

        # Clean up temp files
        try:
            import shutil
            shutil.rmtree(temp_dir)
            logger.debug(f"[{request_id}] 🧹 Cleaned up temporary directory")
        except Exception as e:
            logger.warning(f"[{request_id}] ⚠️ Failed to clean up temp files: {str(e)}")

        # Determine feedback based on score
        is_correct = best_score >= 70.0
        
        if best_score >= 90.0:
            feedback = "Perfect pronunciation! Excellent job!"
        elif best_score >= 80.0:
            feedback = "Great pronunciation! Your accent is very good."
        elif best_score >= 70.0:
            feedback = "Good pronunciation. Keep practicing!"
        elif best_score >= 50.0:
            feedback = "Fair attempt. Try focusing on the syllables that differ from the sample."
        else:
            feedback = "Try again. Listen carefully to the sample pronunciation."

        logger.info(f"[{request_id}] πŸ“Š Final evaluation results: score={best_score:.2f}%, is_correct={is_correct}")
        logger.info(f"[{request_id}] πŸ“ Feedback: '{feedback}'")
        logger.info(f"[{request_id}] βœ… Evaluation complete")

        # Sort results by score descending
        results.sort(key=lambda x: x["similarity_score"], reverse=True)

        return jsonify({
            "is_correct": is_correct,
            "score": best_score,
            "feedback": feedback,
            "user_transcription": user_transcription,
            "best_reference_transcription": best_transcription,
            "reference_locator": reference_locator,
            "details": results
        })

    except Exception as e:
        logger.error(f"[{request_id}] ❌ Unhandled exception in evaluation endpoint: {str(e)}")
        logger.debug(f"[{request_id}] Stack trace: {traceback.format_exc()}")
        
        # Clean up on error
        try:
            import shutil
            shutil.rmtree(temp_dir)
        except:
            pass
            
        return jsonify({"error": f"Internal server error: {str(e)}"}), 500


@app.route("/upload_reference", methods=["POST"])
def upload_reference_audio():
    try:
        if "audio" not in request.files:
            logger.warning("⚠️ Reference upload missing audio file")
            return jsonify({"error": "No audio file uploaded"}), 400

        reference_word = request.form.get("reference_word", "").strip()
        if not reference_word:
            logger.warning("⚠️ Reference upload missing reference word")
            return jsonify({"error": "No reference word provided"}), 400

        # Validate reference word
        reference_patterns = [
            "mayap_a_abak", "mayap_a_ugtu", "mayap_a_gatpanapun", "mayap_a_bengi", "komusta_ka", "malaus_ko_pu","malaus_kayu","agaganaka_da_ka", "pagdulapan_da_ka","kaluguran_da_ka","dakal_a_salamat","panapaya_mu_ku"
        ]

        if reference_word not in reference_patterns:
            logger.warning(f"⚠️ Invalid reference word: {reference_word}")
            return jsonify({"error": f"Invalid reference word. Available: {reference_patterns}"}), 400

        # Create directory for reference pattern if it doesn't exist
        pattern_dir = os.path.join(REFERENCE_AUDIO_DIR, reference_word)
        os.makedirs(pattern_dir, exist_ok=True)

        # Save the reference audio file
        audio_file = request.files["audio"]
        file_path = os.path.join(pattern_dir, secure_filename(audio_file.filename))
        audio_file.save(file_path)

        # Convert to WAV if not already in that format
        if not file_path.lower().endswith('.wav'):
            base_path = os.path.splitext(file_path)[0]
            wav_path = f"{base_path}.wav"
            try:
                audio = AudioSegment.from_file(file_path)
                audio = audio.set_frame_rate(SAMPLE_RATE).set_channels(1)
                audio.export(wav_path, format="wav")
                # Remove original file if conversion successful
                os.unlink(file_path)
                file_path = wav_path
            except Exception as e:
                logger.error(f"❌ Reference audio conversion failed: {str(e)}")
                return jsonify({"error": f"Audio conversion failed: {str(e)}"}), 500

        logger.info(f"βœ… Reference audio saved successfully for {reference_word}: {file_path}")

        # Count how many references we have now
        references = glob.glob(os.path.join(pattern_dir, "*.wav"))
        return jsonify({
            "message": "Reference audio uploaded successfully",
            "reference_word": reference_word,
            "file": os.path.basename(file_path),
            "total_references": len(references)
        })

    except Exception as e:
        logger.error(f"❌ Unhandled exception in reference upload: {str(e)}")
        logger.debug(f"Stack trace: {traceback.format_exc()}")
        return jsonify({"error": f"Internal server error: {str(e)}"}), 500


def init_reference_audio():
    try:
        # Create the output directory first
        os.makedirs(OUTPUT_DIR, exist_ok=True)
        logger.info(f"πŸ“ Created output directory: {OUTPUT_DIR}")

        # Check if the reference audio directory exists in the repository
        if os.path.exists(REFERENCE_AUDIO_DIR):
            logger.info(f"βœ… Found reference audio directory: {REFERENCE_AUDIO_DIR}")

            # Log the contents to verify
            pattern_dirs = [d for d in os.listdir(REFERENCE_AUDIO_DIR)
                            if os.path.isdir(os.path.join(REFERENCE_AUDIO_DIR, d))]
            logger.info(f"πŸ“ Found reference patterns: {pattern_dirs}")

            # Check each pattern directory for wav files
            for pattern_dir_name in pattern_dirs:
                pattern_path = os.path.join(REFERENCE_AUDIO_DIR, pattern_dir_name)
                wav_files = glob.glob(os.path.join(pattern_path, "*.wav"))
                logger.info(f"πŸ“ Found {len(wav_files)} wav files in {pattern_dir_name}")
        else:
            logger.warning(f"⚠️ Reference audio directory not found: {REFERENCE_AUDIO_DIR}")
    except Exception as e:
        logger.error(f"❌ Failed to set up reference audio directory: {str(e)}")


# Add an initialization route that will be called before the first request
@app.before_request
def before_request():
    if not hasattr(g, 'initialized'):
        init_reference_audio()
        g.initialized = True


if __name__ == "__main__":
    init_reference_audio()
    logger.info("πŸš€ Starting Speech API server")
    logger.info(f"πŸ“Š System status: ASR model: {'βœ…' if asr_model else '❌'}")
    for lang, model in tts_models.items():
        logger.info(f"πŸ“Š TTS model {lang}: {'βœ…' if model else '❌'}")

    app.run(host="0.0.0.0", port=7860, debug=True)