Update app.py
Browse files
app.py
CHANGED
@@ -1,53 +1,88 @@
|
|
1 |
# Set cache directories first, before other imports
|
2 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
# Set all cache directories to locations within /tmp
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
10 |
|
11 |
-
#
|
12 |
-
for path in
|
13 |
-
os.
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# Now import the rest of the libraries
|
16 |
-
|
17 |
-
|
18 |
-
import
|
19 |
-
import
|
20 |
-
import
|
21 |
-
|
22 |
-
from
|
23 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
app = Flask(__name__)
|
26 |
CORS(app)
|
27 |
|
28 |
# ASR Model
|
29 |
ASR_MODEL_ID = "Coco-18/mms-asr-tgl-en-safetensor"
|
30 |
-
|
|
|
|
|
|
|
31 |
|
32 |
try:
|
33 |
asr_processor = AutoProcessor.from_pretrained(
|
34 |
ASR_MODEL_ID,
|
35 |
-
cache_dir="
|
36 |
)
|
|
|
|
|
37 |
asr_model = Wav2Vec2ForCTC.from_pretrained(
|
38 |
ASR_MODEL_ID,
|
39 |
-
cache_dir="
|
40 |
)
|
41 |
-
|
|
|
42 |
except Exception as e:
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
print(f"Temp directory writeable: {os.access('/tmp', os.W_OK)}")
|
50 |
-
# Let's continue anyway to see if we can at least start the API
|
51 |
|
52 |
# Language-specific configurations
|
53 |
LANGUAGE_CODES = {
|
@@ -66,125 +101,213 @@ TTS_MODELS = {
|
|
66 |
tts_models = {}
|
67 |
tts_processors = {}
|
68 |
for lang, model_id in TTS_MODELS.items():
|
|
|
69 |
try:
|
70 |
-
|
71 |
model_id,
|
72 |
-
cache_dir="
|
73 |
)
|
74 |
-
|
|
|
|
|
75 |
model_id,
|
76 |
-
cache_dir="
|
77 |
)
|
78 |
-
|
|
|
79 |
except Exception as e:
|
80 |
-
|
|
|
81 |
tts_models[lang] = None
|
82 |
|
83 |
# Constants
|
84 |
SAMPLE_RATE = 16000
|
85 |
OUTPUT_DIR = "/tmp/audio_outputs"
|
86 |
-
|
|
|
|
|
|
|
|
|
87 |
|
88 |
@app.route("/", methods=["GET"])
|
89 |
def home():
|
90 |
-
return jsonify({"message": "Speech API is running
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
@app.route("/asr", methods=["POST"])
|
94 |
def transcribe_audio():
|
|
|
|
|
|
|
|
|
95 |
try:
|
96 |
if "audio" not in request.files:
|
|
|
97 |
return jsonify({"error": "No audio file uploaded"}), 400
|
98 |
|
99 |
audio_file = request.files["audio"]
|
100 |
language = request.form.get("language", "english").lower()
|
101 |
|
102 |
if language not in LANGUAGE_CODES:
|
103 |
-
|
|
|
104 |
|
105 |
lang_code = LANGUAGE_CODES[language]
|
|
|
106 |
|
107 |
# Save the uploaded file temporarily
|
108 |
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(audio_file.filename)[-1]) as temp_audio:
|
109 |
temp_audio.write(audio_file.read())
|
110 |
temp_audio_path = temp_audio.name
|
|
|
111 |
|
112 |
# Convert to WAV if necessary
|
113 |
wav_path = temp_audio_path
|
114 |
if not audio_file.filename.lower().endswith(".wav"):
|
115 |
wav_path = os.path.join(OUTPUT_DIR, "converted_audio.wav")
|
116 |
-
audio
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
# Load and process the WAV file
|
121 |
-
|
|
|
|
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
126 |
|
127 |
-
|
|
|
|
|
|
|
128 |
|
129 |
# Process audio for ASR
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
# Perform ASR
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
except Exception as e:
|
148 |
-
|
149 |
-
|
|
|
150 |
|
151 |
|
152 |
@app.route("/tts", methods=["POST"])
|
153 |
def generate_tts():
|
154 |
try:
|
155 |
data = request.get_json()
|
|
|
|
|
|
|
|
|
156 |
text_input = data.get("text", "").strip()
|
157 |
language = data.get("language", "kapampangan").lower()
|
158 |
|
159 |
-
if language not in TTS_MODELS:
|
160 |
-
return jsonify({"error": "Invalid language"}), 400
|
161 |
if not text_input:
|
|
|
162 |
return jsonify({"error": "No text provided"}), 400
|
|
|
|
|
|
|
|
|
|
|
163 |
if tts_models[language] is None:
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
# Save to file
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
|
|
|
|
|
|
181 |
|
182 |
return jsonify({
|
183 |
"message": "TTS audio generated",
|
184 |
-
"file_url": f"/download/{
|
|
|
|
|
185 |
})
|
186 |
except Exception as e:
|
187 |
-
|
|
|
188 |
return jsonify({"error": f"Internal server error: {str(e)}"}), 500
|
189 |
|
190 |
|
@@ -192,9 +315,17 @@ def generate_tts():
|
|
192 |
def download_audio(filename):
|
193 |
file_path = os.path.join(OUTPUT_DIR, filename)
|
194 |
if os.path.exists(file_path):
|
|
|
195 |
return send_file(file_path, mimetype="audio/wav", as_attachment=True)
|
|
|
|
|
196 |
return jsonify({"error": "File not found"}), 404
|
197 |
|
198 |
|
199 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
200 |
app.run(host="0.0.0.0", port=7860, debug=True)
|
|
|
1 |
# Set cache directories first, before other imports
|
2 |
import os
|
3 |
+
import sys
|
4 |
+
import logging
|
5 |
+
import traceback
|
6 |
+
|
7 |
+
# Configure logging
|
8 |
+
logging.basicConfig(
|
9 |
+
level=logging.INFO,
|
10 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
11 |
+
datefmt='%Y-%m-%d %H:%M:%S'
|
12 |
+
)
|
13 |
+
logger = logging.getLogger("speech_api")
|
14 |
|
15 |
# Set all cache directories to locations within /tmp
|
16 |
+
cache_dirs = {
|
17 |
+
"HF_HOME": "/tmp/hf_home",
|
18 |
+
"TRANSFORMERS_CACHE": "/tmp/transformers_cache",
|
19 |
+
"HUGGINGFACE_HUB_CACHE": "/tmp/huggingface_hub_cache",
|
20 |
+
"TORCH_HOME": "/tmp/torch_home",
|
21 |
+
"XDG_CACHE_HOME": "/tmp/xdg_cache"
|
22 |
+
}
|
23 |
|
24 |
+
# Set environment variables and create directories
|
25 |
+
for env_var, path in cache_dirs.items():
|
26 |
+
os.environ[env_var] = path
|
27 |
+
try:
|
28 |
+
os.makedirs(path, exist_ok=True)
|
29 |
+
logger.info(f"π Created cache directory: {path}")
|
30 |
+
except Exception as e:
|
31 |
+
logger.error(f"β Failed to create directory {path}: {str(e)}")
|
32 |
|
33 |
# Now import the rest of the libraries
|
34 |
+
try:
|
35 |
+
import torch
|
36 |
+
from pydub import AudioSegment
|
37 |
+
import tempfile
|
38 |
+
import torchaudio
|
39 |
+
import soundfile as sf
|
40 |
+
from flask import Flask, request, jsonify, send_file
|
41 |
+
from flask_cors import CORS
|
42 |
+
from transformers import Wav2Vec2ForCTC, AutoProcessor, VitsModel, AutoTokenizer
|
43 |
+
logger.info("β
All required libraries imported successfully")
|
44 |
+
except ImportError as e:
|
45 |
+
logger.critical(f"β Failed to import necessary libraries: {str(e)}")
|
46 |
+
sys.exit(1)
|
47 |
+
|
48 |
+
# Check CUDA availability
|
49 |
+
if torch.cuda.is_available():
|
50 |
+
logger.info(f"π CUDA available: {torch.cuda.get_device_name(0)}")
|
51 |
+
device = "cuda"
|
52 |
+
else:
|
53 |
+
logger.info("β οΈ CUDA not available, using CPU")
|
54 |
+
device = "cpu"
|
55 |
|
56 |
app = Flask(__name__)
|
57 |
CORS(app)
|
58 |
|
59 |
# ASR Model
|
60 |
ASR_MODEL_ID = "Coco-18/mms-asr-tgl-en-safetensor"
|
61 |
+
logger.info(f"π Loading ASR model: {ASR_MODEL_ID}")
|
62 |
+
|
63 |
+
asr_processor = None
|
64 |
+
asr_model = None
|
65 |
|
66 |
try:
|
67 |
asr_processor = AutoProcessor.from_pretrained(
|
68 |
ASR_MODEL_ID,
|
69 |
+
cache_dir=cache_dirs["TRANSFORMERS_CACHE"]
|
70 |
)
|
71 |
+
logger.info("β
ASR processor loaded successfully")
|
72 |
+
|
73 |
asr_model = Wav2Vec2ForCTC.from_pretrained(
|
74 |
ASR_MODEL_ID,
|
75 |
+
cache_dir=cache_dirs["TRANSFORMERS_CACHE"]
|
76 |
)
|
77 |
+
asr_model.to(device)
|
78 |
+
logger.info(f"β
ASR model loaded successfully on {device}")
|
79 |
except Exception as e:
|
80 |
+
logger.error(f"β Error loading ASR model: {str(e)}")
|
81 |
+
logger.debug(f"Stack trace: {traceback.format_exc()}")
|
82 |
+
logger.debug(f"Python version: {sys.version}")
|
83 |
+
logger.debug(f"Current working directory: {os.getcwd()}")
|
84 |
+
logger.debug(f"Temp directory exists: {os.path.exists('/tmp')}")
|
85 |
+
logger.debug(f"Temp directory writeable: {os.access('/tmp', os.W_OK)}")
|
|
|
|
|
86 |
|
87 |
# Language-specific configurations
|
88 |
LANGUAGE_CODES = {
|
|
|
101 |
tts_models = {}
|
102 |
tts_processors = {}
|
103 |
for lang, model_id in TTS_MODELS.items():
|
104 |
+
logger.info(f"π Loading TTS model for {lang}: {model_id}")
|
105 |
try:
|
106 |
+
tts_processors[lang] = AutoTokenizer.from_pretrained(
|
107 |
model_id,
|
108 |
+
cache_dir=cache_dirs["TRANSFORMERS_CACHE"]
|
109 |
)
|
110 |
+
logger.info(f"β
{lang} TTS processor loaded")
|
111 |
+
|
112 |
+
tts_models[lang] = VitsModel.from_pretrained(
|
113 |
model_id,
|
114 |
+
cache_dir=cache_dirs["TRANSFORMERS_CACHE"]
|
115 |
)
|
116 |
+
tts_models[lang].to(device)
|
117 |
+
logger.info(f"β
{lang} TTS model loaded on {device}")
|
118 |
except Exception as e:
|
119 |
+
logger.error(f"β Failed to load {lang} TTS model: {str(e)}")
|
120 |
+
logger.debug(f"Stack trace: {traceback.format_exc()}")
|
121 |
tts_models[lang] = None
|
122 |
|
123 |
# Constants
|
124 |
SAMPLE_RATE = 16000
|
125 |
OUTPUT_DIR = "/tmp/audio_outputs"
|
126 |
+
try:
|
127 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
128 |
+
logger.info(f"π Created output directory: {OUTPUT_DIR}")
|
129 |
+
except Exception as e:
|
130 |
+
logger.error(f"β Failed to create output directory: {str(e)}")
|
131 |
|
132 |
@app.route("/", methods=["GET"])
|
133 |
def home():
|
134 |
+
return jsonify({"message": "Speech API is running", "status": "active"})
|
135 |
+
|
136 |
+
@app.route("/health", methods=["GET"])
|
137 |
+
def health_check():
|
138 |
+
health_status = {
|
139 |
+
"api_status": "online",
|
140 |
+
"asr_model": "loaded" if asr_model is not None else "failed",
|
141 |
+
"tts_models": {lang: "loaded" if model is not None else "failed"
|
142 |
+
for lang, model in tts_models.items()},
|
143 |
+
"device": device
|
144 |
+
}
|
145 |
+
return jsonify(health_status)
|
146 |
|
147 |
@app.route("/asr", methods=["POST"])
|
148 |
def transcribe_audio():
|
149 |
+
if asr_model is None or asr_processor is None:
|
150 |
+
logger.error("β ASR endpoint called but models aren't loaded")
|
151 |
+
return jsonify({"error": "ASR model not available"}), 503
|
152 |
+
|
153 |
try:
|
154 |
if "audio" not in request.files:
|
155 |
+
logger.warning("β οΈ ASR request missing audio file")
|
156 |
return jsonify({"error": "No audio file uploaded"}), 400
|
157 |
|
158 |
audio_file = request.files["audio"]
|
159 |
language = request.form.get("language", "english").lower()
|
160 |
|
161 |
if language not in LANGUAGE_CODES:
|
162 |
+
logger.warning(f"β οΈ Unsupported language requested: {language}")
|
163 |
+
return jsonify({"error": f"Unsupported language: {language}. Available: {list(LANGUAGE_CODES.keys())}"}), 400
|
164 |
|
165 |
lang_code = LANGUAGE_CODES[language]
|
166 |
+
logger.info(f"π Processing {language} audio for ASR")
|
167 |
|
168 |
# Save the uploaded file temporarily
|
169 |
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(audio_file.filename)[-1]) as temp_audio:
|
170 |
temp_audio.write(audio_file.read())
|
171 |
temp_audio_path = temp_audio.name
|
172 |
+
logger.debug(f"π Temporary audio saved to {temp_audio_path}")
|
173 |
|
174 |
# Convert to WAV if necessary
|
175 |
wav_path = temp_audio_path
|
176 |
if not audio_file.filename.lower().endswith(".wav"):
|
177 |
wav_path = os.path.join(OUTPUT_DIR, "converted_audio.wav")
|
178 |
+
logger.info(f"π Converting audio to WAV format: {wav_path}")
|
179 |
+
try:
|
180 |
+
audio = AudioSegment.from_file(temp_audio_path)
|
181 |
+
audio = audio.set_frame_rate(SAMPLE_RATE).set_channels(1)
|
182 |
+
audio.export(wav_path, format="wav")
|
183 |
+
except Exception as e:
|
184 |
+
logger.error(f"β Audio conversion failed: {str(e)}")
|
185 |
+
return jsonify({"error": f"Audio conversion failed: {str(e)}"}), 500
|
186 |
|
187 |
# Load and process the WAV file
|
188 |
+
try:
|
189 |
+
waveform, sr = torchaudio.load(wav_path)
|
190 |
+
logger.debug(f"β
Audio loaded: {wav_path} (Sample rate: {sr}Hz)")
|
191 |
|
192 |
+
# Resample if needed
|
193 |
+
if sr != SAMPLE_RATE:
|
194 |
+
logger.info(f"π Resampling audio from {sr}Hz to {SAMPLE_RATE}Hz")
|
195 |
+
waveform = torchaudio.transforms.Resample(sr, SAMPLE_RATE)(waveform)
|
196 |
|
197 |
+
waveform = waveform / torch.max(torch.abs(waveform))
|
198 |
+
except Exception as e:
|
199 |
+
logger.error(f"β Failed to load or process audio: {str(e)}")
|
200 |
+
return jsonify({"error": f"Audio processing failed: {str(e)}"}), 500
|
201 |
|
202 |
# Process audio for ASR
|
203 |
+
try:
|
204 |
+
inputs = asr_processor(
|
205 |
+
waveform.squeeze().numpy(),
|
206 |
+
sampling_rate=SAMPLE_RATE,
|
207 |
+
return_tensors="pt",
|
208 |
+
language=lang_code
|
209 |
+
)
|
210 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
211 |
+
except Exception as e:
|
212 |
+
logger.error(f"β ASR preprocessing failed: {str(e)}")
|
213 |
+
return jsonify({"error": f"ASR preprocessing failed: {str(e)}"}), 500
|
214 |
|
215 |
# Perform ASR
|
216 |
+
try:
|
217 |
+
with torch.no_grad():
|
218 |
+
logits = asr_model(**inputs).logits
|
219 |
+
ids = torch.argmax(logits, dim=-1)[0]
|
220 |
+
transcription = asr_processor.decode(ids)
|
221 |
+
|
222 |
+
logger.info(f"β
Transcription ({language}): {transcription}")
|
223 |
+
|
224 |
+
# Clean up temp files
|
225 |
+
try:
|
226 |
+
os.unlink(temp_audio_path)
|
227 |
+
if wav_path != temp_audio_path:
|
228 |
+
os.unlink(wav_path)
|
229 |
+
except Exception as e:
|
230 |
+
logger.warning(f"β οΈ Failed to clean up temp files: {str(e)}")
|
231 |
+
|
232 |
+
return jsonify({
|
233 |
+
"transcription": transcription,
|
234 |
+
"language": language,
|
235 |
+
"language_code": lang_code
|
236 |
+
})
|
237 |
+
except Exception as e:
|
238 |
+
logger.error(f"β ASR inference failed: {str(e)}")
|
239 |
+
logger.debug(f"Stack trace: {traceback.format_exc()}")
|
240 |
+
return jsonify({"error": f"ASR inference failed: {str(e)}"}), 500
|
241 |
|
242 |
except Exception as e:
|
243 |
+
logger.error(f"β Unhandled exception in ASR endpoint: {str(e)}")
|
244 |
+
logger.debug(f"Stack trace: {traceback.format_exc()}")
|
245 |
+
return jsonify({"error": f"Internal server error: {str(e)}"}), 500
|
246 |
|
247 |
|
248 |
@app.route("/tts", methods=["POST"])
|
249 |
def generate_tts():
|
250 |
try:
|
251 |
data = request.get_json()
|
252 |
+
if not data:
|
253 |
+
logger.warning("β οΈ TTS endpoint called with no JSON data")
|
254 |
+
return jsonify({"error": "No JSON data provided"}), 400
|
255 |
+
|
256 |
text_input = data.get("text", "").strip()
|
257 |
language = data.get("language", "kapampangan").lower()
|
258 |
|
|
|
|
|
259 |
if not text_input:
|
260 |
+
logger.warning("β οΈ TTS request with empty text")
|
261 |
return jsonify({"error": "No text provided"}), 400
|
262 |
+
|
263 |
+
if language not in TTS_MODELS:
|
264 |
+
logger.warning(f"β οΈ TTS requested for unsupported language: {language}")
|
265 |
+
return jsonify({"error": f"Invalid language. Available options: {list(TTS_MODELS.keys())}"}), 400
|
266 |
+
|
267 |
if tts_models[language] is None:
|
268 |
+
logger.error(f"β TTS model for {language} not loaded")
|
269 |
+
return jsonify({"error": f"TTS model for {language} not available"}), 503
|
270 |
+
|
271 |
+
logger.info(f"π Generating TTS for language: {language}, text: '{text_input}'")
|
272 |
+
|
273 |
+
try:
|
274 |
+
processor = tts_processors[language]
|
275 |
+
model = tts_models[language]
|
276 |
+
inputs = processor(text_input, return_tensors="pt")
|
277 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
278 |
+
except Exception as e:
|
279 |
+
logger.error(f"β TTS preprocessing failed: {str(e)}")
|
280 |
+
return jsonify({"error": f"TTS preprocessing failed: {str(e)}"}), 500
|
281 |
+
|
282 |
+
# Generate speech
|
283 |
+
try:
|
284 |
+
with torch.no_grad():
|
285 |
+
output = model(**inputs).waveform
|
286 |
+
waveform = output.squeeze().cpu().numpy()
|
287 |
+
except Exception as e:
|
288 |
+
logger.error(f"β TTS inference failed: {str(e)}")
|
289 |
+
logger.debug(f"Stack trace: {traceback.format_exc()}")
|
290 |
+
return jsonify({"error": f"TTS inference failed: {str(e)}"}), 500
|
291 |
|
292 |
# Save to file
|
293 |
+
try:
|
294 |
+
output_filename = os.path.join(OUTPUT_DIR, f"{language}_output.wav")
|
295 |
+
sampling_rate = model.config.sampling_rate
|
296 |
+
sf.write(output_filename, waveform, sampling_rate)
|
297 |
+
logger.info(f"β
Speech generated! File saved: {output_filename}")
|
298 |
+
except Exception as e:
|
299 |
+
logger.error(f"β Failed to save audio file: {str(e)}")
|
300 |
+
return jsonify({"error": f"Failed to save audio file: {str(e)}"}), 500
|
301 |
|
302 |
return jsonify({
|
303 |
"message": "TTS audio generated",
|
304 |
+
"file_url": f"/download/{os.path.basename(output_filename)}",
|
305 |
+
"language": language,
|
306 |
+
"text_length": len(text_input)
|
307 |
})
|
308 |
except Exception as e:
|
309 |
+
logger.error(f"β Unhandled exception in TTS endpoint: {str(e)}")
|
310 |
+
logger.debug(f"Stack trace: {traceback.format_exc()}")
|
311 |
return jsonify({"error": f"Internal server error: {str(e)}"}), 500
|
312 |
|
313 |
|
|
|
315 |
def download_audio(filename):
|
316 |
file_path = os.path.join(OUTPUT_DIR, filename)
|
317 |
if os.path.exists(file_path):
|
318 |
+
logger.info(f"π€ Serving audio file: {file_path}")
|
319 |
return send_file(file_path, mimetype="audio/wav", as_attachment=True)
|
320 |
+
|
321 |
+
logger.warning(f"β οΈ Requested file not found: {file_path}")
|
322 |
return jsonify({"error": "File not found"}), 404
|
323 |
|
324 |
|
325 |
if __name__ == "__main__":
|
326 |
+
logger.info("π Starting Speech API server")
|
327 |
+
logger.info(f"π System status: ASR model: {'β
' if asr_model else 'β'}")
|
328 |
+
for lang, model in tts_models.items():
|
329 |
+
logger.info(f"π TTS model {lang}: {'β
' if model else 'β'}")
|
330 |
+
|
331 |
app.run(host="0.0.0.0", port=7860, debug=True)
|