Update app.py
Browse files
app.py
CHANGED
@@ -4,100 +4,150 @@ import torchaudio
|
|
4 |
import soundfile as sf
|
5 |
from flask import Flask, request, jsonify, send_file
|
6 |
from flask_cors import CORS
|
7 |
-
from transformers import VitsModel, AutoTokenizer
|
8 |
|
9 |
-
# Set
|
10 |
os.environ["HF_HOME"] = "/tmp/hf_home"
|
11 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/transformers_cache"
|
12 |
os.environ["HUGGINGFACE_HUB_CACHE"] = "/tmp/huggingface_cache"
|
13 |
os.environ["TORCH_HOME"] = "/tmp/torch_home"
|
14 |
|
15 |
app = Flask(__name__)
|
16 |
-
CORS(app)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
"kapampangan": "facebook/mms-tts-pam",
|
21 |
"tagalog": "facebook/mms-tts-tgl",
|
22 |
"english": "facebook/mms-tts-eng"
|
23 |
}
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
for lang, path in MODELS.items():
|
29 |
try:
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
loaded_processors[lang] = AutoTokenizer.from_pretrained(path, cache_dir="/tmp/huggingface_cache")
|
34 |
-
print(f"β
{lang.capitalize()} model loaded successfully!")
|
35 |
except Exception as e:
|
36 |
-
print(f"β Error loading {lang} model: {
|
37 |
-
|
38 |
-
loaded_processors[lang] = None
|
39 |
|
40 |
# Constants
|
|
|
41 |
OUTPUT_DIR = "/tmp/"
|
42 |
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
43 |
|
|
|
44 |
@app.route("/", methods=["GET"])
|
45 |
def home():
|
46 |
-
"""
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
@app.route("/tts", methods=["POST"])
|
50 |
def generate_tts():
|
51 |
-
"""API endpoint to generate TTS audio"""
|
52 |
try:
|
53 |
-
# Get request data
|
54 |
data = request.get_json()
|
55 |
text_input = data.get("text", "").strip()
|
56 |
language = data.get("language", "kapampangan").lower()
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
return jsonify({"error": "Invalid language. Choose 'kapampangan', 'tagalog', or 'english'."}), 400
|
61 |
if not text_input:
|
62 |
return jsonify({"error": "No text provided"}), 400
|
63 |
-
if
|
64 |
-
return jsonify({"error":
|
65 |
-
|
66 |
-
print(f"π Generating speech for '{text_input}' in {language}...")
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
model = loaded_models[language]
|
71 |
inputs = processor(text_input, return_tensors="pt")
|
72 |
|
73 |
-
# Generate speech - using model(**inputs) instead of model.generate()
|
74 |
with torch.no_grad():
|
75 |
-
output = model(**inputs)
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
sf.write(output_filename, waveform, sampling_rate)
|
83 |
-
print(f"β
Speech generated! File saved: {output_filename}")
|
84 |
-
|
85 |
-
return jsonify({
|
86 |
-
"message": "TTS audio generated",
|
87 |
-
"file_url": f"/download/{language}_output.wav"
|
88 |
-
})
|
89 |
except Exception as e:
|
90 |
-
|
91 |
-
|
92 |
|
93 |
@app.route("/download/<filename>", methods=["GET"])
|
94 |
def download_audio(filename):
|
95 |
-
"""Serve generated audio files"""
|
96 |
file_path = os.path.join(OUTPUT_DIR, filename)
|
97 |
if os.path.exists(file_path):
|
98 |
return send_file(file_path, mimetype="audio/wav", as_attachment=True)
|
99 |
return jsonify({"error": "File not found"}), 404
|
100 |
|
|
|
101 |
if __name__ == "__main__":
|
102 |
app.run(host="0.0.0.0", port=7860, debug=True)
|
103 |
|
|
|
4 |
import soundfile as sf
|
5 |
from flask import Flask, request, jsonify, send_file
|
6 |
from flask_cors import CORS
|
7 |
+
from transformers import Wav2Vec2ForCTC, AutoProcessor, VitsModel, AutoTokenizer
|
8 |
|
9 |
+
# Set cache directories
|
10 |
os.environ["HF_HOME"] = "/tmp/hf_home"
|
11 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/transformers_cache"
|
12 |
os.environ["HUGGINGFACE_HUB_CACHE"] = "/tmp/huggingface_cache"
|
13 |
os.environ["TORCH_HOME"] = "/tmp/torch_home"
|
14 |
|
15 |
app = Flask(__name__)
|
16 |
+
CORS(app)
|
17 |
+
|
18 |
+
# ASR Model (facebook/mms-1b-all)
|
19 |
+
ASR_MODEL_ID = "Coco-18/mms-asr-tgl-en-safetensor"
|
20 |
+
asr_processor = AutoProcessor.from_pretrained(ASR_MODEL_ID)
|
21 |
+
asr_model = Wav2Vec2ForCTC.from_pretrained(ASR_MODEL_ID)
|
22 |
+
|
23 |
+
# Language-specific configurations
|
24 |
+
LANGUAGE_CODES = {
|
25 |
+
"kapampangan": "pam",
|
26 |
+
"tagalog": "tgl",
|
27 |
+
"english": "eng"
|
28 |
+
}
|
29 |
|
30 |
+
# TTS Models (Kapampangan, Tagalog, English)
|
31 |
+
TTS_MODELS = {
|
32 |
"kapampangan": "facebook/mms-tts-pam",
|
33 |
"tagalog": "facebook/mms-tts-tgl",
|
34 |
"english": "facebook/mms-tts-eng"
|
35 |
}
|
36 |
|
37 |
+
tts_models = {}
|
38 |
+
tts_processors = {}
|
39 |
+
for lang, model_id in TTS_MODELS.items():
|
|
|
40 |
try:
|
41 |
+
tts_models[lang] = VitsModel.from_pretrained(model_id, cache_dir="/tmp/huggingface_cache")
|
42 |
+
tts_processors[lang] = AutoTokenizer.from_pretrained(model_id, cache_dir="/tmp/huggingface_cache")
|
43 |
+
print(f"β
TTS Model loaded: {lang}")
|
|
|
|
|
44 |
except Exception as e:
|
45 |
+
print(f"β Error loading {lang} TTS model: {e}")
|
46 |
+
tts_models[lang] = None
|
|
|
47 |
|
48 |
# Constants
|
49 |
+
SAMPLE_RATE = 16000
|
50 |
OUTPUT_DIR = "/tmp/"
|
51 |
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
52 |
|
53 |
+
|
54 |
@app.route("/", methods=["GET"])
|
55 |
def home():
|
56 |
+
return jsonify({"message": "Speech API is running."})
|
57 |
+
|
58 |
+
|
59 |
+
@app.route("/asr", methods=["POST"])
|
60 |
+
def transcribe_audio():
|
61 |
+
try:
|
62 |
+
if "audio" not in request.files:
|
63 |
+
return jsonify({"error": "No audio file uploaded"}), 400
|
64 |
+
|
65 |
+
audio_file = request.files["audio"]
|
66 |
+
language = request.form.get("language", "english").lower()
|
67 |
+
|
68 |
+
# Validate language
|
69 |
+
if language not in LANGUAGE_CODES:
|
70 |
+
return jsonify({"error": f"Unsupported language: {language}"}), 400
|
71 |
+
|
72 |
+
# Get the language code for the ASR model
|
73 |
+
lang_code = LANGUAGE_CODES[language]
|
74 |
+
|
75 |
+
# Save audio file temporarily
|
76 |
+
audio_path = os.path.join(OUTPUT_DIR, "input_audio.wav")
|
77 |
+
audio_file.save(audio_path)
|
78 |
+
|
79 |
+
# Load and process audio
|
80 |
+
try:
|
81 |
+
waveform, sr = torchaudio.load(audio_path)
|
82 |
+
if sr != SAMPLE_RATE:
|
83 |
+
waveform = torchaudio.transforms.Resample(sr, SAMPLE_RATE)(waveform)
|
84 |
+
|
85 |
+
# Normalize audio (recommended for Wav2Vec2)
|
86 |
+
waveform = waveform / torch.max(torch.abs(waveform))
|
87 |
+
|
88 |
+
# Process audio for ASR
|
89 |
+
inputs = asr_processor(
|
90 |
+
waveform.squeeze().numpy(),
|
91 |
+
sampling_rate=SAMPLE_RATE,
|
92 |
+
return_tensors="pt",
|
93 |
+
language=lang_code # Set the language code
|
94 |
+
)
|
95 |
+
except Exception as e:
|
96 |
+
return jsonify({"error": f"Error processing audio: {str(e)}"}), 400
|
97 |
+
|
98 |
+
# Transcribe
|
99 |
+
with torch.no_grad():
|
100 |
+
logits = asr_model(**inputs).logits
|
101 |
+
ids = torch.argmax(logits, dim=-1)[0]
|
102 |
+
transcription = asr_processor.decode(ids)
|
103 |
+
|
104 |
+
# Log the transcription
|
105 |
+
print(f"Transcription ({language}): {transcription}")
|
106 |
+
|
107 |
+
return jsonify({"transcription": transcription})
|
108 |
+
except Exception as e:
|
109 |
+
print(f"ASR error: {str(e)}")
|
110 |
+
return jsonify({"error": f"ASR failed: {str(e)}"}), 500
|
111 |
+
|
112 |
|
113 |
@app.route("/tts", methods=["POST"])
|
114 |
def generate_tts():
|
|
|
115 |
try:
|
|
|
116 |
data = request.get_json()
|
117 |
text_input = data.get("text", "").strip()
|
118 |
language = data.get("language", "kapampangan").lower()
|
119 |
|
120 |
+
if language not in TTS_MODELS:
|
121 |
+
return jsonify({"error": "Invalid language"}), 400
|
|
|
122 |
if not text_input:
|
123 |
return jsonify({"error": "No text provided"}), 400
|
124 |
+
if tts_models[language] is None:
|
125 |
+
return jsonify({"error": "TTS model not available"}), 500
|
|
|
|
|
126 |
|
127 |
+
processor = tts_processors[language]
|
128 |
+
model = tts_models[language]
|
|
|
129 |
inputs = processor(text_input, return_tensors="pt")
|
130 |
|
|
|
131 |
with torch.no_grad():
|
132 |
+
output = model.generate(**inputs)
|
133 |
+
|
134 |
+
waveform = output.cpu().numpy().flatten()
|
135 |
+
output_filename = os.path.join(OUTPUT_DIR, f"{language}_tts.wav")
|
136 |
+
sf.write(output_filename, waveform, SAMPLE_RATE)
|
137 |
+
|
138 |
+
return jsonify({"file_url": f"/download/{language}_tts.wav"})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
except Exception as e:
|
140 |
+
return jsonify({"error": f"TTS failed: {e}"}), 500
|
141 |
+
|
142 |
|
143 |
@app.route("/download/<filename>", methods=["GET"])
|
144 |
def download_audio(filename):
|
|
|
145 |
file_path = os.path.join(OUTPUT_DIR, filename)
|
146 |
if os.path.exists(file_path):
|
147 |
return send_file(file_path, mimetype="audio/wav", as_attachment=True)
|
148 |
return jsonify({"error": "File not found"}), 404
|
149 |
|
150 |
+
|
151 |
if __name__ == "__main__":
|
152 |
app.run(host="0.0.0.0", port=7860, debug=True)
|
153 |
|