Update app.py
Browse files
app.py
CHANGED
@@ -14,6 +14,8 @@ for path in ["/tmp/hf_home", "/tmp/transformers_cache", "/tmp/huggingface_hub_ca
|
|
14 |
|
15 |
# Now import the rest of the libraries
|
16 |
import torch
|
|
|
|
|
17 |
import torchaudio
|
18 |
import soundfile as sf
|
19 |
from flask import Flask, request, jsonify, send_file
|
@@ -98,49 +100,51 @@ def transcribe_audio():
|
|
98 |
audio_file = request.files["audio"]
|
99 |
language = request.form.get("language", "english").lower()
|
100 |
|
101 |
-
# Validate language
|
102 |
if language not in LANGUAGE_CODES:
|
103 |
return jsonify({"error": f"Unsupported language: {language}"}), 400
|
104 |
|
105 |
-
# Get the language code for the ASR model
|
106 |
lang_code = LANGUAGE_CODES[language]
|
107 |
|
108 |
-
# Save
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
135 |
with torch.no_grad():
|
136 |
logits = asr_model(**inputs).logits
|
137 |
ids = torch.argmax(logits, dim=-1)[0]
|
138 |
transcription = asr_processor.decode(ids)
|
139 |
|
140 |
-
# Log the transcription
|
141 |
print(f"Transcription ({language}): {transcription}")
|
142 |
|
143 |
return jsonify({"transcription": transcription})
|
|
|
144 |
except Exception as e:
|
145 |
print(f"ASR error: {str(e)}")
|
146 |
return jsonify({"error": f"ASR failed: {str(e)}"}), 500
|
|
|
14 |
|
15 |
# Now import the rest of the libraries
|
16 |
import torch
|
17 |
+
from pydub import AudioSegment
|
18 |
+
import tempfile
|
19 |
import torchaudio
|
20 |
import soundfile as sf
|
21 |
from flask import Flask, request, jsonify, send_file
|
|
|
100 |
audio_file = request.files["audio"]
|
101 |
language = request.form.get("language", "english").lower()
|
102 |
|
|
|
103 |
if language not in LANGUAGE_CODES:
|
104 |
return jsonify({"error": f"Unsupported language: {language}"}), 400
|
105 |
|
|
|
106 |
lang_code = LANGUAGE_CODES[language]
|
107 |
|
108 |
+
# Save the uploaded file temporarily
|
109 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(audio_file.filename)[-1]) as temp_audio:
|
110 |
+
temp_audio.write(audio_file.read())
|
111 |
+
temp_audio_path = temp_audio.name
|
112 |
+
|
113 |
+
# Convert to WAV if necessary
|
114 |
+
wav_path = temp_audio_path
|
115 |
+
if not audio_file.filename.lower().endswith(".wav"):
|
116 |
+
wav_path = os.path.join(OUTPUT_DIR, "converted_audio.wav")
|
117 |
+
audio = AudioSegment.from_file(temp_audio_path)
|
118 |
+
audio = audio.set_frame_rate(SAMPLE_RATE).set_channels(1)
|
119 |
+
audio.export(wav_path, format="wav")
|
120 |
+
|
121 |
+
# Load and process the WAV file
|
122 |
+
waveform, sr = torchaudio.load(wav_path)
|
123 |
+
|
124 |
+
# Resample if needed
|
125 |
+
if sr != SAMPLE_RATE:
|
126 |
+
waveform = torchaudio.transforms.Resample(sr, SAMPLE_RATE)(waveform)
|
127 |
+
|
128 |
+
waveform = waveform / torch.max(torch.abs(waveform))
|
129 |
+
|
130 |
+
# Process audio for ASR
|
131 |
+
inputs = asr_processor(
|
132 |
+
waveform.squeeze().numpy(),
|
133 |
+
sampling_rate=SAMPLE_RATE,
|
134 |
+
return_tensors="pt",
|
135 |
+
language=lang_code
|
136 |
+
)
|
137 |
+
|
138 |
+
# Perform ASR
|
139 |
with torch.no_grad():
|
140 |
logits = asr_model(**inputs).logits
|
141 |
ids = torch.argmax(logits, dim=-1)[0]
|
142 |
transcription = asr_processor.decode(ids)
|
143 |
|
|
|
144 |
print(f"Transcription ({language}): {transcription}")
|
145 |
|
146 |
return jsonify({"transcription": transcription})
|
147 |
+
|
148 |
except Exception as e:
|
149 |
print(f"ASR error: {str(e)}")
|
150 |
return jsonify({"error": f"ASR failed: {str(e)}"}), 500
|