File size: 12,682 Bytes
9c8a2cf
8cb6f0a
04bb535
 
 
 
 
 
 
 
 
 
 
9c8a2cf
 
04bb535
 
 
 
 
 
 
9c8a2cf
04bb535
 
 
 
 
 
 
 
9c8a2cf
 
04bb535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cb6f0a
661887e
e085921
 
9c8a2cf
e085921
04bb535
 
 
 
9c8a2cf
 
 
 
04bb535
9c8a2cf
04bb535
 
9c8a2cf
 
04bb535
9c8a2cf
04bb535
 
9c8a2cf
04bb535
 
 
 
 
 
e085921
 
 
 
 
 
 
661887e
e085921
 
661887e
 
 
 
 
e085921
 
 
04bb535
8cb6f0a
04bb535
9c8a2cf
04bb535
9c8a2cf
04bb535
 
 
9c8a2cf
04bb535
9c8a2cf
04bb535
 
8cb6f0a
04bb535
 
e085921
661887e
036e058
e085921
9c8a2cf
04bb535
 
 
 
 
661887e
fe51424
 
04bb535
 
 
 
 
 
 
 
 
 
 
 
e085921
 
 
04bb535
 
 
 
e085921
 
04bb535
e085921
 
 
 
 
 
04bb535
 
e085921
 
04bb535
e085921
f03b779
 
 
 
04bb535
f03b779
 
 
 
 
04bb535
 
 
 
 
 
 
 
f03b779
 
04bb535
 
 
f03b779
04bb535
 
 
 
f03b779
04bb535
 
 
 
f03b779
 
04bb535
 
 
 
 
 
 
 
 
 
 
f03b779
 
04bb535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f03b779
e085921
04bb535
 
 
e085921
fe51424
661887e
 
036e058
 
04bb535
 
 
 
036e058
 
661887e
036e058
04bb535
036e058
04bb535
 
 
 
 
e085921
04bb535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eddb57d
 
04bb535
 
 
 
 
 
 
 
eddb57d
 
 
04bb535
 
 
eddb57d
fe51424
04bb535
 
eddb57d
e085921
661887e
036e058
 
661887e
 
04bb535
036e058
04bb535
 
661887e
 
e085921
661887e
04bb535
 
 
 
 
9c8a2cf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
# Set cache directories first, before other imports
import os
import sys
import logging
import traceback

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger("speech_api")

# Set all cache directories to locations within /tmp
cache_dirs = {
    "HF_HOME": "/tmp/hf_home",
    "TRANSFORMERS_CACHE": "/tmp/transformers_cache",
    "HUGGINGFACE_HUB_CACHE": "/tmp/huggingface_hub_cache",
    "TORCH_HOME": "/tmp/torch_home",
    "XDG_CACHE_HOME": "/tmp/xdg_cache"
}

# Set environment variables and create directories
for env_var, path in cache_dirs.items():
    os.environ[env_var] = path
    try:
        os.makedirs(path, exist_ok=True)
        logger.info(f"πŸ“ Created cache directory: {path}")
    except Exception as e:
        logger.error(f"❌ Failed to create directory {path}: {str(e)}")

# Now import the rest of the libraries
try:
    import torch
    from pydub import AudioSegment
    import tempfile
    import torchaudio
    import soundfile as sf
    from flask import Flask, request, jsonify, send_file
    from flask_cors import CORS
    from transformers import Wav2Vec2ForCTC, AutoProcessor, VitsModel, AutoTokenizer
    logger.info("βœ… All required libraries imported successfully")
except ImportError as e:
    logger.critical(f"❌ Failed to import necessary libraries: {str(e)}")
    sys.exit(1)

# Check CUDA availability
if torch.cuda.is_available():
    logger.info(f"πŸš€ CUDA available: {torch.cuda.get_device_name(0)}")
    device = "cuda"
else:
    logger.info("⚠️ CUDA not available, using CPU")
    device = "cpu"

app = Flask(__name__)
CORS(app)

# ASR Model
ASR_MODEL_ID = "Coco-18/mms-asr-tgl-en-safetensor"
logger.info(f"πŸ”„ Loading ASR model: {ASR_MODEL_ID}")

asr_processor = None
asr_model = None

try:
    asr_processor = AutoProcessor.from_pretrained(
        ASR_MODEL_ID,
        cache_dir=cache_dirs["TRANSFORMERS_CACHE"]
    )
    logger.info("βœ… ASR processor loaded successfully")
    
    asr_model = Wav2Vec2ForCTC.from_pretrained(
        ASR_MODEL_ID,
        cache_dir=cache_dirs["TRANSFORMERS_CACHE"]
    )
    asr_model.to(device)
    logger.info(f"βœ… ASR model loaded successfully on {device}")
except Exception as e:
    logger.error(f"❌ Error loading ASR model: {str(e)}")
    logger.debug(f"Stack trace: {traceback.format_exc()}")
    logger.debug(f"Python version: {sys.version}")
    logger.debug(f"Current working directory: {os.getcwd()}")
    logger.debug(f"Temp directory exists: {os.path.exists('/tmp')}")
    logger.debug(f"Temp directory writeable: {os.access('/tmp', os.W_OK)}")

# Language-specific configurations
LANGUAGE_CODES = {
    "kapampangan": "pam",
    "tagalog": "tgl",
    "english": "eng"
}

# TTS Models (Kapampangan, Tagalog, English)
TTS_MODELS = {
    "kapampangan": "facebook/mms-tts-pam",
    "tagalog": "facebook/mms-tts-tgl",
    "english": "facebook/mms-tts-eng"
}

tts_models = {}
tts_processors = {}
for lang, model_id in TTS_MODELS.items():
    logger.info(f"πŸ”„ Loading TTS model for {lang}: {model_id}")
    try:
        tts_processors[lang] = AutoTokenizer.from_pretrained(
            model_id, 
            cache_dir=cache_dirs["TRANSFORMERS_CACHE"]
        )
        logger.info(f"βœ… {lang} TTS processor loaded")
        
        tts_models[lang] = VitsModel.from_pretrained(
            model_id, 
            cache_dir=cache_dirs["TRANSFORMERS_CACHE"]
        )
        tts_models[lang].to(device)
        logger.info(f"βœ… {lang} TTS model loaded on {device}")
    except Exception as e:
        logger.error(f"❌ Failed to load {lang} TTS model: {str(e)}")
        logger.debug(f"Stack trace: {traceback.format_exc()}")
        tts_models[lang] = None

# Constants
SAMPLE_RATE = 16000
OUTPUT_DIR = "/tmp/audio_outputs"
try:
    os.makedirs(OUTPUT_DIR, exist_ok=True)
    logger.info(f"πŸ“ Created output directory: {OUTPUT_DIR}")
except Exception as e:
    logger.error(f"❌ Failed to create output directory: {str(e)}")

@app.route("/", methods=["GET"])
def home():
    return jsonify({"message": "Speech API is running", "status": "active"})

@app.route("/health", methods=["GET"])
def health_check():
    health_status = {
        "api_status": "online",
        "asr_model": "loaded" if asr_model is not None else "failed",
        "tts_models": {lang: "loaded" if model is not None else "failed" 
                      for lang, model in tts_models.items()},
        "device": device
    }
    return jsonify(health_status)

@app.route("/asr", methods=["POST"])
def transcribe_audio():
    if asr_model is None or asr_processor is None:
        logger.error("❌ ASR endpoint called but models aren't loaded")
        return jsonify({"error": "ASR model not available"}), 503
        
    try:
        if "audio" not in request.files:
            logger.warning("⚠️ ASR request missing audio file")
            return jsonify({"error": "No audio file uploaded"}), 400

        audio_file = request.files["audio"]
        language = request.form.get("language", "english").lower()

        if language not in LANGUAGE_CODES:
            logger.warning(f"⚠️ Unsupported language requested: {language}")
            return jsonify({"error": f"Unsupported language: {language}. Available: {list(LANGUAGE_CODES.keys())}"}), 400

        lang_code = LANGUAGE_CODES[language]
        logger.info(f"πŸ”„ Processing {language} audio for ASR")

        # Save the uploaded file temporarily
        with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(audio_file.filename)[-1]) as temp_audio:
            temp_audio.write(audio_file.read())
            temp_audio_path = temp_audio.name
            logger.debug(f"πŸ“ Temporary audio saved to {temp_audio_path}")

        # Convert to WAV if necessary
        wav_path = temp_audio_path
        if not audio_file.filename.lower().endswith(".wav"):
            wav_path = os.path.join(OUTPUT_DIR, "converted_audio.wav")
            logger.info(f"πŸ”„ Converting audio to WAV format: {wav_path}")
            try:
                audio = AudioSegment.from_file(temp_audio_path)
                audio = audio.set_frame_rate(SAMPLE_RATE).set_channels(1)
                audio.export(wav_path, format="wav")
            except Exception as e:
                logger.error(f"❌ Audio conversion failed: {str(e)}")
                return jsonify({"error": f"Audio conversion failed: {str(e)}"}), 500

        # Load and process the WAV file
        try:
            waveform, sr = torchaudio.load(wav_path)
            logger.debug(f"βœ… Audio loaded: {wav_path} (Sample rate: {sr}Hz)")

            # Resample if needed
            if sr != SAMPLE_RATE:
                logger.info(f"πŸ”„ Resampling audio from {sr}Hz to {SAMPLE_RATE}Hz")
                waveform = torchaudio.transforms.Resample(sr, SAMPLE_RATE)(waveform)

            waveform = waveform / torch.max(torch.abs(waveform))
        except Exception as e:
            logger.error(f"❌ Failed to load or process audio: {str(e)}")
            return jsonify({"error": f"Audio processing failed: {str(e)}"}), 500

        # Process audio for ASR
        try:
            inputs = asr_processor(
                waveform.squeeze().numpy(),
                sampling_rate=SAMPLE_RATE,
                return_tensors="pt",
                language=lang_code
            )
            inputs = {k: v.to(device) for k, v in inputs.items()}
        except Exception as e:
            logger.error(f"❌ ASR preprocessing failed: {str(e)}")
            return jsonify({"error": f"ASR preprocessing failed: {str(e)}"}), 500

        # Perform ASR
        try:
            with torch.no_grad():
                logits = asr_model(**inputs).logits
            ids = torch.argmax(logits, dim=-1)[0]
            transcription = asr_processor.decode(ids)
            
            logger.info(f"βœ… Transcription ({language}): {transcription}")
            
            # Clean up temp files
            try:
                os.unlink(temp_audio_path)
                if wav_path != temp_audio_path:
                    os.unlink(wav_path)
            except Exception as e:
                logger.warning(f"⚠️ Failed to clean up temp files: {str(e)}")
                
            return jsonify({
                "transcription": transcription,
                "language": language,
                "language_code": lang_code
            })
        except Exception as e:
            logger.error(f"❌ ASR inference failed: {str(e)}")
            logger.debug(f"Stack trace: {traceback.format_exc()}")
            return jsonify({"error": f"ASR inference failed: {str(e)}"}), 500

    except Exception as e:
        logger.error(f"❌ Unhandled exception in ASR endpoint: {str(e)}")
        logger.debug(f"Stack trace: {traceback.format_exc()}")
        return jsonify({"error": f"Internal server error: {str(e)}"}), 500


@app.route("/tts", methods=["POST"])
def generate_tts():
    try:
        data = request.get_json()
        if not data:
            logger.warning("⚠️ TTS endpoint called with no JSON data")
            return jsonify({"error": "No JSON data provided"}), 400
            
        text_input = data.get("text", "").strip()
        language = data.get("language", "kapampangan").lower()

        if not text_input:
            logger.warning("⚠️ TTS request with empty text")
            return jsonify({"error": "No text provided"}), 400
            
        if language not in TTS_MODELS:
            logger.warning(f"⚠️ TTS requested for unsupported language: {language}")
            return jsonify({"error": f"Invalid language. Available options: {list(TTS_MODELS.keys())}"}), 400
            
        if tts_models[language] is None:
            logger.error(f"❌ TTS model for {language} not loaded")
            return jsonify({"error": f"TTS model for {language} not available"}), 503

        logger.info(f"πŸ”„ Generating TTS for language: {language}, text: '{text_input}'")
        
        try:
            processor = tts_processors[language]
            model = tts_models[language]
            inputs = processor(text_input, return_tensors="pt")
            inputs = {k: v.to(device) for k, v in inputs.items()}
        except Exception as e:
            logger.error(f"❌ TTS preprocessing failed: {str(e)}")
            return jsonify({"error": f"TTS preprocessing failed: {str(e)}"}), 500

        # Generate speech
        try:
            with torch.no_grad():
                output = model(**inputs).waveform
                waveform = output.squeeze().cpu().numpy()
        except Exception as e:
            logger.error(f"❌ TTS inference failed: {str(e)}")
            logger.debug(f"Stack trace: {traceback.format_exc()}")
            return jsonify({"error": f"TTS inference failed: {str(e)}"}), 500

        # Save to file
        try:
            output_filename = os.path.join(OUTPUT_DIR, f"{language}_output.wav")
            sampling_rate = model.config.sampling_rate
            sf.write(output_filename, waveform, sampling_rate)
            logger.info(f"βœ… Speech generated! File saved: {output_filename}")
        except Exception as e:
            logger.error(f"❌ Failed to save audio file: {str(e)}")
            return jsonify({"error": f"Failed to save audio file: {str(e)}"}), 500

        return jsonify({
            "message": "TTS audio generated",
            "file_url": f"/download/{os.path.basename(output_filename)}",
            "language": language,
            "text_length": len(text_input)
        })
    except Exception as e:
        logger.error(f"❌ Unhandled exception in TTS endpoint: {str(e)}")
        logger.debug(f"Stack trace: {traceback.format_exc()}")
        return jsonify({"error": f"Internal server error: {str(e)}"}), 500


@app.route("/download/<filename>", methods=["GET"])
def download_audio(filename):
    file_path = os.path.join(OUTPUT_DIR, filename)
    if os.path.exists(file_path):
        logger.info(f"πŸ“€ Serving audio file: {file_path}")
        return send_file(file_path, mimetype="audio/wav", as_attachment=True)
    
    logger.warning(f"⚠️ Requested file not found: {file_path}")
    return jsonify({"error": "File not found"}), 404


if __name__ == "__main__":
    logger.info("πŸš€ Starting Speech API server")
    logger.info(f"πŸ“Š System status: ASR model: {'βœ…' if asr_model else '❌'}")
    for lang, model in tts_models.items():
        logger.info(f"πŸ“Š TTS model {lang}: {'βœ…' if model else '❌'}")
    
    app.run(host="0.0.0.0", port=7860, debug=True)