File size: 4,626 Bytes
4d6e8c2
 
 
 
 
 
 
 
 
 
 
70f5f26
1c33274
70f5f26
1c33274
70f5f26
4d6e8c2
 
70f5f26
 
 
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76fccaf
 
4d6e8c2
 
 
 
70f5f26
 
 
 
 
4d6e8c2
 
bf8c867
 
 
bc7edfa
 
1b0a6ea
31cb1dc
 
 
843b402
bc7edfa
 
e740326
9e73d63
4a96b36
 
bc7edfa
31cb1dc
6e3a1c9
8afdb60
4a96b36
 
6e3a1c9
1b0a6ea
 
 
 
b5bdf99
bc7edfa
6e3a1c9
 
d9fb9e1
31cb1dc
d9fb9e1
 
 
21d957b
6e3a1c9
e740326
4a96b36
70f5f26
 
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
70f5f26
4d6e8c2
 
 
 
1c33274
4d6e8c2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random

from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

router = APIRouter()

DESCRIPTION = "Random Baseline"
ROUTE = "/text"

@router.post(ROUTE, tags=["Text Task"], 
             description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
    """
    Evaluate text classification for climate disinformation detection.
    
    Current Model: Random Baseline
    - Makes random predictions from the label space (0-7)
    - Used as a baseline for comparison
    """
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "0_not_relevant": 0,
        "1_not_happening": 1,
        "2_not_human": 2,
        "3_not_bad": 3,
        "4_solutions_harmful_unnecessary": 4,
        "5_science_unreliable": 5,
        "6_proponents_biased": 6,
        "7_fossil_fuels_needed": 7
    }

    # Load and prepare the dataset
    dataset = load_dataset(request.dataset_name)

    # Convert string labels to integers
    dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})

    # Split dataset
    train_test = dataset["train"]
    test_dataset = dataset["test"]
    
    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
    #--------------------------------------------------------------------------------------------   
    
    # Make random predictions (placeholder for actual model inference)
    #true_labels = test_dataset["label"]
    #predictions = [random.randint(0, 7) for _ in range(len(true_labels))]

    from transformers import AutoModelForSequenceClassification, AutoTokenizer
    import torch
    from torch.utils.data import DataLoader, TensorDataset

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {device}")
  
    # Load model and tokenizer from Hugging Face Hub
    MODEL_REPO = "ClimateDebunk/FineTunedDistilBert4SeqClass"

    tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased', do_lower_case=True)
    MAX_LENGTH = 365

    model = AutoModelForSequenceClassification.from_pretrained(MODEL_REPO)
    model.to(device)
    model.eval()  # Set to evaluation mode


    # tokenize texts
    test_encodings = tokenizer(test_dataset["quote"], padding='max_length', truncation=True, max_length=MAX_LENGTH, return_tensors="pt")
    test_labels = torch.tensor(test_dataset["label"])
    
    test_dataset_0 = TensorDataset(test_encodings["input_ids"], test_encodings["attention_mask"], test_labels)
    test_loader = DataLoader(test_dataset_0, batch_size=16)
    print('encoded')
    
    predictions = []
    with torch.no_grad():
        for batch in test_loader:
            input_ids, attention_mask, labels = [x.to(device) for x in batch]
            outputs = model(input_ids, attention_mask=attention_mask)
            preds = torch.argmax(outputs.logits, dim=1)
            predictions.extend(preds.cpu().numpy())
            print('here is a batch')

    true_labels = test_dataset["label"]

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    #--------------------------------------------------------------------------------------------   

    
    # Stop tracking emissions
    emissions_data = tracker.stop_task()
    
    # Calculate accuracy
    accuracy = accuracy_score(true_labels, predictions)
    
    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }
    
    return results