Spaces:
Sleeping
Sleeping
File size: 4,626 Bytes
4d6e8c2 70f5f26 1c33274 70f5f26 1c33274 70f5f26 4d6e8c2 70f5f26 4d6e8c2 76fccaf 4d6e8c2 70f5f26 4d6e8c2 bf8c867 bc7edfa 1b0a6ea 31cb1dc 843b402 bc7edfa e740326 9e73d63 4a96b36 bc7edfa 31cb1dc 6e3a1c9 8afdb60 4a96b36 6e3a1c9 1b0a6ea b5bdf99 bc7edfa 6e3a1c9 d9fb9e1 31cb1dc d9fb9e1 21d957b 6e3a1c9 e740326 4a96b36 70f5f26 4d6e8c2 70f5f26 4d6e8c2 1c33274 4d6e8c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
router = APIRouter()
DESCRIPTION = "Random Baseline"
ROUTE = "/text"
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-7)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"]
test_dataset = dataset["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
# Make random predictions (placeholder for actual model inference)
#true_labels = test_dataset["label"]
#predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
from torch.utils.data import DataLoader, TensorDataset
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load model and tokenizer from Hugging Face Hub
MODEL_REPO = "ClimateDebunk/FineTunedDistilBert4SeqClass"
tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased', do_lower_case=True)
MAX_LENGTH = 365
model = AutoModelForSequenceClassification.from_pretrained(MODEL_REPO)
model.to(device)
model.eval() # Set to evaluation mode
# tokenize texts
test_encodings = tokenizer(test_dataset["quote"], padding='max_length', truncation=True, max_length=MAX_LENGTH, return_tensors="pt")
test_labels = torch.tensor(test_dataset["label"])
test_dataset_0 = TensorDataset(test_encodings["input_ids"], test_encodings["attention_mask"], test_labels)
test_loader = DataLoader(test_dataset_0, batch_size=16)
print('encoded')
predictions = []
with torch.no_grad():
for batch in test_loader:
input_ids, attention_mask, labels = [x.to(device) for x in batch]
outputs = model(input_ids, attention_mask=attention_mask)
preds = torch.argmax(outputs.logits, dim=1)
predictions.extend(preds.cpu().numpy())
print('here is a batch')
true_labels = test_dataset["label"]
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results |