Spaces:
Sleeping
Sleeping
Update tasks/text.py
Browse files- tasks/text.py +22 -45
tasks/text.py
CHANGED
@@ -60,60 +60,37 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
60 |
#true_labels = test_dataset["label"]
|
61 |
#predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
|
62 |
|
63 |
-
from transformers import
|
64 |
-
import
|
65 |
-
|
66 |
-
from
|
67 |
-
|
68 |
-
|
69 |
-
MODEL_REPO = "ClimateDebunk/Quantized_DistilBertForSequenceClassification"
|
70 |
-
MODEL_FILENAME = "distilbert_quantized_dynamic.onnx"
|
71 |
|
72 |
-
|
73 |
-
MODEL_PATH = hf_hub_download(repo_id=MODEL_REPO, filename=MODEL_FILENAME)
|
74 |
-
print(f"Model successfully downloaded at: {MODEL_PATH}")
|
75 |
-
|
76 |
-
tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
|
77 |
-
print("Tokenizer loaded successfully!")
|
78 |
-
|
79 |
-
ort_session = ort.InferenceSession(MODEL_PATH, providers=["CPUExecutionProvider"])
|
80 |
-
print("ONNX session initialized successfully!")
|
81 |
-
except Exception as e:
|
82 |
-
print(f"Error loading ONNX model: {e}")
|
83 |
-
|
84 |
|
|
|
|
|
85 |
|
86 |
-
|
|
|
|
|
87 |
def preprocess(texts):
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
padding='max_length',
|
92 |
-
truncation=True,
|
93 |
-
max_length=365,
|
94 |
-
return_tensors="np"
|
95 |
-
)
|
96 |
-
print(f"Tokenized input_ids shape: {inputs['input_ids'].shape}")
|
97 |
-
print(f"Tokenized attention_mask shape: {inputs['attention_mask'].shape}")
|
98 |
-
return inputs
|
99 |
-
|
100 |
-
# Run inference
|
101 |
def predict(texts):
|
102 |
-
|
103 |
inputs = preprocess(texts)
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
}
|
108 |
-
ort_outputs = ort_session.run(None, ort_inputs)
|
109 |
-
logits = ort_outputs[0]
|
110 |
-
predictions = np.argmax(logits, axis=1)
|
111 |
return predictions
|
112 |
-
|
113 |
-
|
114 |
texts = test_dataset["quote"]
|
115 |
predictions = predict(texts)
|
116 |
-
|
117 |
true_labels = test_dataset["label"]
|
118 |
#--------------------------------------------------------------------------------------------
|
119 |
# YOUR MODEL INFERENCE STOPS HERE
|
|
|
60 |
#true_labels = test_dataset["label"]
|
61 |
#predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
|
62 |
|
63 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
64 |
+
import torch
|
65 |
+
|
66 |
+
# Load model and tokenizer from Hugging Face Hub
|
67 |
+
MODEL_REPO = "ClimateDebunk/FineTunedDistilBert4SeqClass"
|
68 |
+
MODEL_FILENAME = "distilbert_trained.pth"
|
|
|
|
|
69 |
|
70 |
+
model_path = hf_hub_download(repo_id=MODEL_REPO, filename=MODEL_FILENAME)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_REPO)
|
73 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_REPO)
|
74 |
|
75 |
+
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
|
76 |
+
model.eval() # Set to evaluation mode
|
77 |
+
|
78 |
def preprocess(texts):
|
79 |
+
""" Tokenize text inputs for DistilBERT """
|
80 |
+
return tokenizer(texts, padding='max_length', truncation=True, max_length=365, return_tensors="pt")
|
81 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
def predict(texts):
|
83 |
+
""" Run inference using the fine-tuned DistilBERT model """
|
84 |
inputs = preprocess(texts)
|
85 |
+
with torch.no_grad():
|
86 |
+
outputs = model(**inputs)
|
87 |
+
predictions = torch.argmax(outputs.logits, dim=1).tolist()
|
|
|
|
|
|
|
|
|
88 |
return predictions
|
89 |
+
|
90 |
+
# Run inference
|
91 |
texts = test_dataset["quote"]
|
92 |
predictions = predict(texts)
|
93 |
+
|
94 |
true_labels = test_dataset["label"]
|
95 |
#--------------------------------------------------------------------------------------------
|
96 |
# YOUR MODEL INFERENCE STOPS HERE
|