Spaces:
Sleeping
Sleeping
Update tasks/text.py
Browse files- tasks/text.py +20 -5
tasks/text.py
CHANGED
@@ -68,23 +68,38 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
68 |
# Load the ONNX model and tokenizer
|
69 |
MODEL_REPO = "ClimateDebunk/Quantized_DistilBertForSequenceClassification"
|
70 |
MODEL_FILENAME = "distilbert_quantized_dynamic.onnx"
|
71 |
-
MODEL_PATH = hf_hub_download(repo_id=MODEL_REPO, filename=MODEL_FILENAME)
|
72 |
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
# Preprocess the text data
|
77 |
def preprocess(texts):
|
78 |
-
|
|
|
79 |
texts,
|
80 |
-
padding=
|
81 |
truncation=True,
|
82 |
max_length=365,
|
83 |
return_tensors="np"
|
84 |
)
|
|
|
|
|
|
|
85 |
|
86 |
# Run inference
|
87 |
def predict(texts):
|
|
|
88 |
inputs = preprocess(texts)
|
89 |
ort_inputs = {
|
90 |
"input_ids": inputs["input_ids"].astype(np.int64),
|
|
|
68 |
# Load the ONNX model and tokenizer
|
69 |
MODEL_REPO = "ClimateDebunk/Quantized_DistilBertForSequenceClassification"
|
70 |
MODEL_FILENAME = "distilbert_quantized_dynamic.onnx"
|
|
|
71 |
|
72 |
+
try:
|
73 |
+
MODEL_PATH = hf_hub_download(repo_id=MODEL_REPO, filename=MODEL_FILENAME)
|
74 |
+
print(f"Model successfully downloaded at: {MODEL_PATH}")
|
75 |
+
|
76 |
+
tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
|
77 |
+
print("Tokenizer loaded successfully!")
|
78 |
+
|
79 |
+
ort_session = ort.InferenceSession(MODEL_PATH, providers=["CPUExecutionProvider"])
|
80 |
+
print("ONNX session initialized successfully!")
|
81 |
+
except Exception as e:
|
82 |
+
print(f"Error loading ONNX model: {e}")
|
83 |
+
|
84 |
+
|
85 |
|
86 |
# Preprocess the text data
|
87 |
def preprocess(texts):
|
88 |
+
print(f"📌 Preprocessing {len(texts)} text samples...")
|
89 |
+
inputs = tokenizer(
|
90 |
texts,
|
91 |
+
padding='max_length',
|
92 |
truncation=True,
|
93 |
max_length=365,
|
94 |
return_tensors="np"
|
95 |
)
|
96 |
+
print(f"Tokenized input_ids shape: {inputs['input_ids'].shape}")
|
97 |
+
print(f"Tokenized attention_mask shape: {inputs['attention_mask'].shape}")
|
98 |
+
return inputs
|
99 |
|
100 |
# Run inference
|
101 |
def predict(texts):
|
102 |
+
print(f"📌 Running inference on {len(texts)} samples...")
|
103 |
inputs = preprocess(texts)
|
104 |
ort_inputs = {
|
105 |
"input_ids": inputs["input_ids"].astype(np.int64),
|