Spaces:
Sleeping
Sleeping
Update tasks/text.py
Browse files- tasks/text.py +12 -58
tasks/text.py
CHANGED
@@ -71,69 +71,23 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
71 |
MAX_LENGTH = 365
|
72 |
|
73 |
model = AutoModelForSequenceClassification.from_pretrained(MODEL_REPO)
|
74 |
-
|
75 |
|
76 |
-
class QuotesDataset(Dataset):
|
77 |
-
def __init__(self, encodings, labels):
|
78 |
-
self.encodings = encodings
|
79 |
-
self.labels = labels
|
80 |
-
|
81 |
-
def __getitem__(self, idx):
|
82 |
-
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
|
83 |
-
item['labels'] = torch.tensor(self.labels[idx], dtype=torch.long)
|
84 |
-
return item
|
85 |
-
|
86 |
-
def __len__(self):
|
87 |
-
return len(self.labels)
|
88 |
-
|
89 |
-
def encode_data(tokenizer, texts, labels, max_length):
|
90 |
-
try:
|
91 |
-
if isinstance(texts, pd.Series):
|
92 |
-
texts = texts.tolist()
|
93 |
-
if isinstance(labels, pd.Series):
|
94 |
-
labels = labels.tolist()
|
95 |
-
|
96 |
-
encodings = tokenizer(texts, truncation=True, padding='max_length', max_length=max_length, return_tensors='pt')
|
97 |
-
return QuotesDataset(encodings, labels)
|
98 |
-
|
99 |
-
except Exception as e:
|
100 |
-
print(f"Error during tokenization: {e}")
|
101 |
-
return None
|
102 |
-
|
103 |
-
val_dataset = encode_data(tokenizer, test_dataset['quote'], test_dataset['label'], MAX_LENGTH)
|
104 |
-
val_loader = DataLoader(val_dataset, batch_size= 16, shuffle=False)
|
105 |
-
|
106 |
|
107 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
108 |
-
print(f"Using device: {device}")
|
109 |
-
|
110 |
-
def validate_model(model, val_loader, device):
|
111 |
-
model.eval()
|
112 |
-
predictions = []
|
113 |
-
with torch.no_grad():
|
114 |
-
for batch in val_loader:
|
115 |
-
batch = {k: v.to(device) for k, v in batch.items()}
|
116 |
-
outputs = model(**batch)
|
117 |
-
preds = torch.argmax(outputs.logits, dim=-1)
|
118 |
-
predictions.extend(preds.cpu().numpy())
|
119 |
-
return predictions
|
120 |
-
|
121 |
-
|
122 |
# tokenize texts
|
123 |
-
|
124 |
-
#test_labels = torch.tensor(test_dataset["label"])
|
125 |
|
126 |
-
|
127 |
-
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
true_labels = test_dataset["label"]
|
138 |
|
139 |
#--------------------------------------------------------------------------------------------
|
|
|
71 |
MAX_LENGTH = 365
|
72 |
|
73 |
model = AutoModelForSequenceClassification.from_pretrained(MODEL_REPO)
|
74 |
+
model.eval() # Set to evaluation mode
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
# tokenize texts
|
78 |
+
test_encodings = tokenizer(test_dataset["quote"], padding='max_length', truncation=True, max_length=MAX_LENGTH, return_tensors="pt")
|
|
|
79 |
|
80 |
+
test_dataset = TensorDataset(test_encodings["input_ids"], test_encodings["attention_mask"], test_labels)
|
81 |
+
test_loader = DataLoader(test_dataset, batch_size=16)
|
82 |
|
83 |
+
predictions = []
|
84 |
+
with torch.no_grad():
|
85 |
+
for batch in test_loader:
|
86 |
+
input_ids, attention_mask, labels = [x.to(device) for x in batch]
|
87 |
+
outputs = model(input_ids, attention_mask=attention_mask)
|
88 |
+
preds = torch.argmax(outputs.logits, dim=1)
|
89 |
+
predictions.extend(preds.cpu().numpy())
|
90 |
+
|
91 |
true_labels = test_dataset["label"]
|
92 |
|
93 |
#--------------------------------------------------------------------------------------------
|