Spaces:
Sleeping
Sleeping
Update tasks/text.py
Browse files- tasks/text.py +60 -12
tasks/text.py
CHANGED
@@ -62,32 +62,80 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
62 |
|
63 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
64 |
import torch
|
|
|
65 |
|
66 |
# Load model and tokenizer from Hugging Face Hub
|
67 |
MODEL_REPO = "ClimateDebunk/FineTunedDistilBert4SeqClass"
|
68 |
|
69 |
tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased', do_lower_case=True)
|
|
|
|
|
70 |
model = AutoModelForSequenceClassification.from_pretrained(MODEL_REPO)
|
|
|
71 |
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
def
|
79 |
-
|
80 |
-
|
81 |
with torch.no_grad():
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
84 |
return predictions
|
|
|
85 |
|
86 |
-
#
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
true_labels = test_dataset["label"]
|
|
|
91 |
#--------------------------------------------------------------------------------------------
|
92 |
# YOUR MODEL INFERENCE STOPS HERE
|
93 |
#--------------------------------------------------------------------------------------------
|
|
|
62 |
|
63 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
64 |
import torch
|
65 |
+
from torch.utils.data import DataLoader
|
66 |
|
67 |
# Load model and tokenizer from Hugging Face Hub
|
68 |
MODEL_REPO = "ClimateDebunk/FineTunedDistilBert4SeqClass"
|
69 |
|
70 |
tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased', do_lower_case=True)
|
71 |
+
MAX_LENGTH = 365
|
72 |
+
|
73 |
model = AutoModelForSequenceClassification.from_pretrained(MODEL_REPO)
|
74 |
+
#model.eval() # Set to evaluation mode
|
75 |
|
76 |
+
class QuotesDataset(Dataset):
|
77 |
+
def __init__(self, encodings, labels):
|
78 |
+
self.encodings = encodings
|
79 |
+
self.labels = labels
|
80 |
+
|
81 |
+
def __getitem__(self, idx):
|
82 |
+
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
|
83 |
+
item['labels'] = torch.tensor(self.labels[idx], dtype=torch.long)
|
84 |
+
return item
|
85 |
|
86 |
+
def __len__(self):
|
87 |
+
return len(self.labels)
|
88 |
+
|
89 |
+
def encode_data(tokenizer, texts, labels, max_length):
|
90 |
+
try:
|
91 |
+
if isinstance(texts, pd.Series):
|
92 |
+
texts = texts.tolist()
|
93 |
+
if isinstance(labels, pd.Series):
|
94 |
+
labels = labels.tolist()
|
95 |
+
|
96 |
+
encodings = tokenizer(texts, truncation=True, padding='max_length', max_length=max_length, return_tensors='pt')
|
97 |
+
return QuotesDataset(encodings, labels)
|
98 |
+
|
99 |
+
except Exception as e:
|
100 |
+
print(f"Error during tokenization: {e}")
|
101 |
+
return None
|
102 |
+
|
103 |
+
val_dataset = encode_data(tokenizer, test_dataset['quote'], test_dataset['label'], MAX_LENGTH)
|
104 |
+
val_loader = DataLoader(val_dataset, batch_size= batch_size, shuffle=False)
|
105 |
+
|
106 |
+
|
107 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
108 |
+
print(f"Using device: {device}")
|
109 |
|
110 |
+
def validate_model(model, val_loader, device):
|
111 |
+
model.eval()
|
112 |
+
predictions = []
|
113 |
with torch.no_grad():
|
114 |
+
for batch in val_loader:
|
115 |
+
batch = {k: v.to(device) for k, v in batch.items()}
|
116 |
+
outputs = model(**batch)
|
117 |
+
preds = torch.argmax(outputs.logits, dim=-1)
|
118 |
+
predictions.extend(preds.cpu().numpy())
|
119 |
return predictions
|
120 |
+
|
121 |
|
122 |
+
# tokenize texts
|
123 |
+
#test_encodings = tokenizer(test_dataset["quote"], padding='max_length', truncation=True, max_length=MAX_LENGTH, return_tensors="pt")
|
124 |
+
#test_labels = torch.tensor(test_dataset["label"])
|
125 |
+
|
126 |
+
#test_dataset = TensorDataset(test_encodings["input_ids"], test_encodings["attention_mask"], test_labels)
|
127 |
+
#test_loader = DataLoader(test_dataset, batch_size=16)
|
128 |
|
129 |
+
#predictions = []
|
130 |
+
#with torch.no_grad():
|
131 |
+
#for batch in test_loader:
|
132 |
+
# input_ids, attention_mask, labels = [x.to(device) for x in batch]
|
133 |
+
# outputs = model(input_ids, attention_mask=attention_mask)
|
134 |
+
# predictions = torch.argmax(outputs.logits, dim=1)
|
135 |
+
|
136 |
+
predictions = validate_model(model, val_loader, device)
|
137 |
true_labels = test_dataset["label"]
|
138 |
+
|
139 |
#--------------------------------------------------------------------------------------------
|
140 |
# YOUR MODEL INFERENCE STOPS HERE
|
141 |
#--------------------------------------------------------------------------------------------
|