Spaces:
Sleeping
Sleeping
File size: 7,884 Bytes
d0ba0ce 944017e 02cc2be d0ba0ce 7c95914 d0ba0ce 7c95914 d0ba0ce bf3e34d 7c95914 71ceb20 f6bf684 3e6af9f 8e350f6 44c0e78 668775b 44c0e78 e5e70d9 266d4b2 d0ba0ce 3e6af9f a98948f 72a2744 3e6af9f a2d99d3 0f0647f e67aebd 72a2744 bf3e34d 3e6af9f e67aebd 3e6af9f e67aebd 3e6af9f 7c95914 bf3e34d e67aebd bf3e34d 72a2744 2b04423 d0ba0ce 2b04423 3e6af9f 72a2744 dcd9708 272b4f8 8e350f6 0d3004a 8e350f6 272b4f8 3e6af9f 272b4f8 72a2744 272b4f8 8e350f6 272b4f8 8e350f6 272b4f8 72a2744 272b4f8 3e6af9f d0ba0ce 72a2744 d0ba0ce 3e6af9f f8e6457 3e6af9f abd1f1b 72a2744 0da8351 4b3134c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import streamlit as st
from PIL import Image
import time
from dotenv import load_dotenv
import pickle
from huggingface_hub import Repository
from PyPDF2 import PdfReader
from streamlit_extras.add_vertical_space import add_vertical_space
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import OpenAI
from langchain.chains.question_answering import load_qa_chain
from langchain.callbacks import get_openai_callback
import os
import traceback
import pandas as pd
import pydeck as pdk
from urllib.error import URLError
# Initialize session state variables
if 'chat_history_page1' not in st.session_state:
st.session_state['chat_history_page1'] = []
# Step 1: Clone the Dataset Repository
repo = Repository(
local_dir="Private_Book", # Local directory to clone the repository
repo_type="dataset", # Specify that this is a dataset repository
clone_from="Anne31415/Private_Book", # Replace with your repository URL
token=os.environ["HUB_TOKEN"] # Use the secret token to authenticate
)
repo.git_pull() # Pull the latest changes (if any)
# Step 2: Load the PDF File
pdf_path = "Private_Book/grunddaten-krankenhaeuser-2016.pdf" # Replace with your PDF file path
api_key = os.getenv("OPENAI_API_KEY")
# Retrieve the API key from st.secrets
# Updated caching mechanism using st.cache_data
#@st.cache_data(persist="disk")
def load_vector_store(file_path, store_name, force_reload=False):
try:
if force_reload or not os.path.exists(f"{store_name}.pkl"):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
text = load_pdf_text(file_path)
chunks = text_splitter.split_text(text=text)
embeddings = OpenAIEmbeddings()
VectorStore = FAISS.from_texts(chunks, embedding=embeddings)
# Inspect the VectorStore object
print("Inspecting VectorStore object...")
print("Type of VectorStore:", type(VectorStore))
print("Attributes of VectorStore:", dir(VectorStore))
# Additional specific inspections if necessary
# for example, if VectorStore has an attribute 'some_attribute':
# print("VectorStore.some_attribute:", VectorStore.some_attribute)
with open(f"{store_name}.pkl", "wb") as f:
pickle.dump(VectorStore, f)
else:
with open(f"{store_name}.pkl", "rb") as f:
VectorStore = pickle.load(f)
return VectorStore
except Exception as e:
st.error(f"An error occurred: {e}")
traceback.print_exc()
return None
# Utility function to load text from a PDF
def load_pdf_text(file_path):
pdf_reader = PdfReader(file_path)
text = ""
for page in pdf_reader.pages:
text += page.extract_text() or "" # Add fallback for pages where text extraction fails
return text
def load_chatbot():
return load_qa_chain(llm=OpenAI(), chain_type="stuff")
def display_chat_history(chat_history):
for chat in chat_history:
background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf"
st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
def page1():
try:
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
col1, col2 = st.columns([3, 1])
with col1:
st.title("Welcome to BinDocs ChatBot!")
with col2:
image = Image.open('BinDoc Logo (Quadratisch).png')
st.image(image, use_column_width='always')
if not os.path.exists(pdf_path):
st.error("File not found. Please check the file path.")
return
VectorStore = load_vector_store(pdf_path, "vector_store_page1", force_reload=False)
display_chat_history(st.session_state['chat_history_page1'])
st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
st.write("<!-- End Spacer -->", unsafe_allow_html=True)
query = st.text_input("Ask questions about your PDF file (in any preferred language):")
add_vertical_space(2)
col1, col2 = st.columns(2)
with col1:
if st.button("Was kann ich mit dem Prognose-Analyse-Tool machen?"):
query = "Was kann ich mit dem Prognose-Analyse-Tool machen?"
if st.button("Was sagt mir die Farbe der Balken der Bevölkerungsentwicklung?"):
query = "Was sagt mir die Farbe der Balken der Bevölkerungsentwicklung?"
if st.button("Ich habe mein Meta-Password vergessen, wie kann ich es zurücksetzen?"):
query = "Ich habe mein Meta-Password vergessen, wie kann ich es zurücksetzen?"
with col2:
if st.button("Dies ist eine reine Test Frage, welche aber eine ausreichende Länge hat."):
query = "Dies ist eine reine Test Frage, welche aber eine ausreichende Länge hat."
if st.button("Was sagt mir denn generell die wundervolle Bevölkerungsentwicklung?"):
query = "Was sagt mir denn generell die wundervolle Bevölkerungsentwicklung?"
if st.button("Ob ich hier wohl viel schreibe, dass die Fragen vom Layout her passen?"):
query = "Ob ich hier wohl viel schreibe, dass die Fragen vom Layout her passen?"
if query:
st.session_state['chat_history_page1'].append(("User", query, "new"))
start_time = time.time()
with st.spinner('Bot is thinking...'):
chain = load_chatbot()
docs = VectorStore.similarity_search(query=query, k=3)
with get_openai_callback() as cb:
response = chain.run(input_documents=docs, question=query)
end_time = time.time()
duration = end_time - start_time
st.text(f"Response time: {duration:.2f} seconds")
st.session_state['chat_history_page1'].append(("Bot", response, "new"))
new_messages = st.session_state['chat_history_page1'][-2:]
for chat in new_messages:
background_color = "#ffeecf"
st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
query = ""
st.session_state['chat_history_page1'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history_page1']]
except Exception as e:
st.error(f"Upsi, an unexpected error occurred: {e}")
def page2():
st.title('BinDoc GmbH')
def main():
# Sidebar content
with st.sidebar:
st.title('BinDoc GmbH')
st.markdown("Experience revolutionary interaction with BinDocs Chat App, leveraging state-of-the-art AI technology.")
add_vertical_space(1)
page = st.sidebar.selectbox("Choose a page", ["Document Analysis Bot", "Coding Assistance Bot"])
add_vertical_space(1)
st.write('Made with ❤️ by BinDoc GmbH')
# Main area content based on page selection
if page == "Document Analysis Bot":
page1()
elif page == "Coding Assistance Bot":
page2()
if __name__ == "__main__":
main() |