Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -15,11 +15,18 @@ from langchain.chains.question_answering import load_qa_chain
|
|
15 |
from langchain.callbacks import get_openai_callback
|
16 |
import os
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
|
21 |
-
# Set the page config to make the sidebar start in the collapsed state
|
22 |
-
st.set_page_config(initial_sidebar_state="collapsed")
|
23 |
|
24 |
# Step 1: Clone the Dataset Repository
|
25 |
repo = Repository(
|
@@ -33,54 +40,39 @@ repo.git_pull() # Pull the latest changes (if any)
|
|
33 |
# Step 2: Load the PDF File
|
34 |
pdf_path = "Private_Book/141123_Kombi_compressed.pdf" # Replace with your PDF file path
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
st.markdown("Experience revolutionary interaction with BinDocs Chat App, leveraging state-of-the-art AI technology.")
|
39 |
-
|
40 |
-
add_vertical_space(1) # Adjust as per the desired spacing
|
41 |
-
|
42 |
-
st.markdown("""
|
43 |
-
Hello! I’m here to assist you with:<br><br>
|
44 |
-
📘 **Glossary Inquiries:**<br>
|
45 |
-
I can clarify terms like "DiGA", "AOP", or "BfArM", providing clear and concise explanations to help you understand our content better.<br><br>
|
46 |
-
🆘 **Help Page Navigation:**<br>
|
47 |
-
Ask me if you forgot your password or want to know more about topics related to the platform.<br><br>
|
48 |
-
📰 **Latest Whitepapers Insights:**<br>
|
49 |
-
Curious about our recent publications? Feel free to ask about our latest whitepapers!<br><br>
|
50 |
-
""", unsafe_allow_html=True)
|
51 |
-
|
52 |
-
add_vertical_space(1) # Adjust as per the desired spacing
|
53 |
|
54 |
-
st.write('Made with ❤️ by BinDoc GmbH')
|
55 |
|
56 |
-
|
57 |
-
|
58 |
|
59 |
-
# Updated caching mechanism using st.cache_data
|
60 |
-
@st.cache_data(persist="disk") # Using persist="disk" to save cache across sessions
|
61 |
|
62 |
|
|
|
|
|
63 |
def load_vector_store(file_path, store_name, force_reload=False):
|
64 |
-
# Check if we need to force reload the vector store (e.g., when the PDF changes)
|
65 |
-
if force_reload or not os.path.exists(f"{store_name}.pkl"):
|
66 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
67 |
-
chunk_size=1000,
|
68 |
-
chunk_overlap=200,
|
69 |
-
length_function=len
|
70 |
-
)
|
71 |
-
|
72 |
-
text = load_pdf_text(file_path)
|
73 |
-
chunks = text_splitter.split_text(text=text)
|
74 |
-
|
75 |
-
embeddings = OpenAIEmbeddings()
|
76 |
-
VectorStore = FAISS.from_texts(chunks, embedding=embeddings)
|
77 |
-
with open(f"{store_name}.pkl", "wb") as f:
|
78 |
-
pickle.dump(VectorStore, f)
|
79 |
-
else:
|
80 |
-
with open(f"{store_name}.pkl", "rb") as f:
|
81 |
-
VectorStore = pickle.load(f)
|
82 |
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
# Utility function to load text from a PDF
|
86 |
def load_pdf_text(file_path):
|
@@ -93,7 +85,16 @@ def load_pdf_text(file_path):
|
|
93 |
def load_chatbot():
|
94 |
return load_qa_chain(llm=OpenAI(), chain_type="stuff")
|
95 |
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
try:
|
98 |
hide_streamlit_style = """
|
99 |
<style>
|
@@ -114,22 +115,16 @@ def main():
|
|
114 |
image = Image.open('BinDoc Logo (Quadratisch).png')
|
115 |
st.image(image, use_column_width='always')
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
# Start tracking user interactions
|
121 |
with streamlit_analytics.track():
|
122 |
if not os.path.exists(pdf_path):
|
123 |
st.error("File not found. Please check the file path.")
|
124 |
return
|
125 |
|
126 |
-
VectorStore = load_vector_store(pdf_path, "
|
127 |
-
|
128 |
-
|
129 |
-
if "chat_history" not in st.session_state:
|
130 |
-
st.session_state['chat_history'] = []
|
131 |
-
|
132 |
-
display_chat_history(st.session_state['chat_history'])
|
133 |
|
134 |
st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
|
135 |
st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
|
@@ -163,7 +158,7 @@ def main():
|
|
163 |
|
164 |
|
165 |
if query:
|
166 |
-
st.session_state['
|
167 |
|
168 |
# Start timing
|
169 |
start_time = time.time()
|
@@ -185,11 +180,11 @@ def main():
|
|
185 |
# You can use Streamlit's text function to display the timing
|
186 |
st.text(f"Response time: {duration:.2f} seconds")
|
187 |
|
188 |
-
st.session_state['
|
189 |
|
190 |
|
191 |
# Display new messages at the bottom
|
192 |
-
new_messages = st.session_state['
|
193 |
for chat in new_messages:
|
194 |
background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf"
|
195 |
new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
|
@@ -199,18 +194,144 @@ def main():
|
|
199 |
query = ""
|
200 |
|
201 |
# Mark all messages as old after displaying
|
202 |
-
st.session_state['
|
203 |
|
204 |
except Exception as e:
|
205 |
st.error(f"Upsi, an unexpected error occurred: {e}")
|
206 |
# Optionally log the exception details to a file or error tracking service
|
207 |
|
208 |
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
|
215 |
if __name__ == "__main__":
|
216 |
-
main()
|
|
|
15 |
from langchain.callbacks import get_openai_callback
|
16 |
import os
|
17 |
|
18 |
+
import pandas as pd
|
19 |
+
import pydeck as pdk
|
20 |
+
from urllib.error import URLError
|
21 |
+
|
22 |
+
# Initialize session state variables
|
23 |
+
if 'chat_history_page1' not in st.session_state:
|
24 |
+
st.session_state['chat_history_page1'] = []
|
25 |
+
|
26 |
+
if 'chat_history_page2' not in st.session_state:
|
27 |
+
st.session_state['chat_history_page2'] = []
|
28 |
|
29 |
|
|
|
|
|
30 |
|
31 |
# Step 1: Clone the Dataset Repository
|
32 |
repo = Repository(
|
|
|
40 |
# Step 2: Load the PDF File
|
41 |
pdf_path = "Private_Book/141123_Kombi_compressed.pdf" # Replace with your PDF file path
|
42 |
|
43 |
+
# Step 2: Load the PDF File
|
44 |
+
pdf_path2 = "Private_Book/Deutsche_Kodierrichtlinien_23.pdf" # Replace with your PDF file path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
|
|
46 |
|
47 |
+
api_key = os.getenv("OPENAI_API_KEY")
|
48 |
+
# Retrieve the API key from st.secrets
|
49 |
|
|
|
|
|
50 |
|
51 |
|
52 |
+
# Updated caching mechanism using st.cache_data
|
53 |
+
@st.cache_data(persist="disk") # Using persist="disk" to save cache across sessions
|
54 |
def load_vector_store(file_path, store_name, force_reload=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
# Check if we need to force reload the vector store (e.g., when the PDF changes)
|
57 |
+
if force_reload or not os.path.exists(f"{store_name}.pkl"):
|
58 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
59 |
+
chunk_size=1000,
|
60 |
+
chunk_overlap=200,
|
61 |
+
length_function=len
|
62 |
+
)
|
63 |
+
|
64 |
+
text = load_pdf_text(file_path)
|
65 |
+
chunks = text_splitter.split_text(text=text)
|
66 |
+
|
67 |
+
embeddings = OpenAIEmbeddings()
|
68 |
+
VectorStore = FAISS.from_texts(chunks, embedding=embeddings)
|
69 |
+
with open(f"{store_name}.pkl", "wb") as f:
|
70 |
+
pickle.dump(VectorStore, f)
|
71 |
+
else:
|
72 |
+
with open(f"{store_name}.pkl", "rb") as f:
|
73 |
+
VectorStore = pickle.load(f)
|
74 |
+
|
75 |
+
return VectorStore
|
76 |
|
77 |
# Utility function to load text from a PDF
|
78 |
def load_pdf_text(file_path):
|
|
|
85 |
def load_chatbot():
|
86 |
return load_qa_chain(llm=OpenAI(), chain_type="stuff")
|
87 |
|
88 |
+
|
89 |
+
def display_chat_history(chat_history):
|
90 |
+
for chat in chat_history:
|
91 |
+
background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf"
|
92 |
+
st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
def page1():
|
98 |
try:
|
99 |
hide_streamlit_style = """
|
100 |
<style>
|
|
|
115 |
image = Image.open('BinDoc Logo (Quadratisch).png')
|
116 |
st.image(image, use_column_width='always')
|
117 |
|
118 |
+
|
|
|
|
|
119 |
# Start tracking user interactions
|
120 |
with streamlit_analytics.track():
|
121 |
if not os.path.exists(pdf_path):
|
122 |
st.error("File not found. Please check the file path.")
|
123 |
return
|
124 |
|
125 |
+
VectorStore = load_vector_store(pdf_path, "vector_store_page1", force_reload=False)
|
126 |
+
|
127 |
+
display_chat_history(st.session_state['chat_history_page1'])
|
|
|
|
|
|
|
|
|
128 |
|
129 |
st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
|
130 |
st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
|
|
|
158 |
|
159 |
|
160 |
if query:
|
161 |
+
st.session_state['chat_history_page1'].append(("User", query, "new"))
|
162 |
|
163 |
# Start timing
|
164 |
start_time = time.time()
|
|
|
180 |
# You can use Streamlit's text function to display the timing
|
181 |
st.text(f"Response time: {duration:.2f} seconds")
|
182 |
|
183 |
+
st.session_state['chat_history_page1'].append(("Bot", response, "new"))
|
184 |
|
185 |
|
186 |
# Display new messages at the bottom
|
187 |
+
new_messages = st.session_state['chat_history_page1'][-2:]
|
188 |
for chat in new_messages:
|
189 |
background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf"
|
190 |
new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
|
|
|
194 |
query = ""
|
195 |
|
196 |
# Mark all messages as old after displaying
|
197 |
+
st.session_state['chat_history_page1'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history_page1']]
|
198 |
|
199 |
except Exception as e:
|
200 |
st.error(f"Upsi, an unexpected error occurred: {e}")
|
201 |
# Optionally log the exception details to a file or error tracking service
|
202 |
|
203 |
|
204 |
+
|
205 |
+
|
206 |
+
def page2():
|
207 |
+
try:
|
208 |
+
hide_streamlit_style = """
|
209 |
+
<style>
|
210 |
+
#MainMenu {visibility: hidden;}
|
211 |
+
footer {visibility: hidden;}
|
212 |
+
</style>
|
213 |
+
"""
|
214 |
+
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
215 |
+
|
216 |
+
# Create columns for layout
|
217 |
+
col1, col2 = st.columns([3, 1]) # Adjust the ratio to your liking
|
218 |
+
|
219 |
+
with col1:
|
220 |
+
st.title("Kodieren statt Frustrieren!")
|
221 |
+
|
222 |
+
with col2:
|
223 |
+
# Load and display the image in the right column, which will be the top-right corner of the page
|
224 |
+
image = Image.open('BinDoc Logo (Quadratisch).png')
|
225 |
+
st.image(image, use_column_width='always')
|
226 |
+
|
227 |
+
|
228 |
+
# Start tracking user interactions
|
229 |
+
with streamlit_analytics.track():
|
230 |
+
|
231 |
+
if not os.path.exists(pdf_path2):
|
232 |
+
st.error("File not found. Please check the file path.")
|
233 |
+
return
|
234 |
+
|
235 |
+
VectorStore = load_vector_store(pdf_path2, "vector_store_page2", force_reload=False)
|
236 |
+
|
237 |
+
|
238 |
+
|
239 |
+
display_chat_history(st.session_state['chat_history_page2'])
|
240 |
+
|
241 |
+
st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
|
242 |
+
st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
|
243 |
+
st.write("<!-- End Spacer -->", unsafe_allow_html=True)
|
244 |
+
|
245 |
+
new_messages_placeholder = st.empty()
|
246 |
+
|
247 |
+
query = st.text_input("Ask questions about your PDF file (in any preferred language):")
|
248 |
+
|
249 |
+
add_vertical_space(2) # Adjust as per the desired spacing
|
250 |
+
|
251 |
+
# Create two columns for the buttons
|
252 |
+
col1, col2 = st.columns(2)
|
253 |
+
|
254 |
+
with col1:
|
255 |
+
if st.button("Wann kodiere ich etwas als Hauptdiagnose und wann als Nebendiagnose?"):
|
256 |
+
query = "Wann kodiere ich etwas als Hauptdiagnose und wann als Nebendiagnose?"
|
257 |
+
if st.button("Ein Patient wird mit Aszites bei bekannter Leberzirrhose stationär aufgenommen. Es wird nur der Aszites durch eine Punktion behandelt.Wie kodiere ich das?"):
|
258 |
+
query = ("Ein Patient wird mit Aszites bei bekannter Leberzirrhose stationär aufgenommen. Es wird nur der Aszites durch eine Punktion behandelt.Wie kodiere ich das?")
|
259 |
+
if st.button("Hauptdiagnose: Hirntumor wie kodiere ich das?"):
|
260 |
+
query = "Hauptdiagnose: Hirntumor wie kodiere ich das?"
|
261 |
+
|
262 |
+
|
263 |
+
with col2:
|
264 |
+
if st.button("Welche Prozeduren werden normalerweise nicht verschlüsselt?"):
|
265 |
+
query = "Welche Prozeduren werden normalerweise nicht verschlüsselt?"
|
266 |
+
if st.button("Was muss ich bei der Kodierung der Folgezusänden von Krankheiten beachten?"):
|
267 |
+
query = "Was muss ich bei der Kodierung der Folgezusänden von Krankheiten beachten?"
|
268 |
+
if st.button("Was mache ich bei einer Verdachtsdiagnose, wenn mein Patien nach Hause entlassen wird?"):
|
269 |
+
query = "Was mache ich bei einer Verdachtsdiagnose, wenn mein Patien nach Hause entlassen wird?"
|
270 |
+
|
271 |
+
|
272 |
+
if query:
|
273 |
+
st.session_state['chat_history_page2'].append(("User", query, "new"))
|
274 |
+
|
275 |
+
# Start timing
|
276 |
+
start_time = time.time()
|
277 |
+
|
278 |
+
with st.spinner('Bot is thinking...'):
|
279 |
+
# Use the VectorStore loaded at the start from the session state
|
280 |
+
chain = load_chatbot()
|
281 |
+
docs = VectorStore.similarity_search(query=query, k=3)
|
282 |
+
with get_openai_callback() as cb:
|
283 |
+
response = chain.run(input_documents=docs, question=query)
|
284 |
+
|
285 |
+
|
286 |
+
# Stop timing
|
287 |
+
end_time = time.time()
|
288 |
+
|
289 |
+
# Calculate duration
|
290 |
+
duration = end_time - start_time
|
291 |
+
|
292 |
+
# You can use Streamlit's text function to display the timing
|
293 |
+
st.text(f"Response time: {duration:.2f} seconds")
|
294 |
+
|
295 |
+
st.session_state['chat_history_page2'].append(("Bot", response, "new"))
|
296 |
+
|
297 |
+
|
298 |
+
# Display new messages at the bottom
|
299 |
+
new_messages = st.session_state['chat_history_page2'][-2:]
|
300 |
+
for chat in new_messages:
|
301 |
+
background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf"
|
302 |
+
new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
|
303 |
+
|
304 |
+
|
305 |
+
# Clear the input field after the query is made
|
306 |
+
query = ""
|
307 |
+
|
308 |
+
# Mark all messages as old after displaying
|
309 |
+
st.session_state['chat_history_page2'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history_page2']]
|
310 |
+
|
311 |
+
except Exception as e:
|
312 |
+
st.error(f"Upsi, an unexpected error occurred: {e}")
|
313 |
+
# Optionally log the exception details to a file or error tracking service
|
314 |
+
|
315 |
+
|
316 |
+
|
317 |
+
|
318 |
+
|
319 |
+
def main():
|
320 |
+
# Sidebar content
|
321 |
+
with st.sidebar:
|
322 |
+
st.title('BinDoc GmbH')
|
323 |
+
st.markdown("Experience revolutionary interaction with BinDocs Chat App, leveraging state-of-the-art AI technology.")
|
324 |
+
add_vertical_space(1)
|
325 |
+
page = st.sidebar.selectbox("Choose a page", ["Document Analysis Bot", "Coding Assistance Bot"])
|
326 |
+
add_vertical_space(1)
|
327 |
+
st.write('Made with ❤️ by BinDoc GmbH')
|
328 |
+
|
329 |
+
# Main area content based on page selection
|
330 |
+
if page == "Document Analysis Bot":
|
331 |
+
page1()
|
332 |
+
elif page == "Coding Assistance Bot":
|
333 |
+
page2()
|
334 |
|
335 |
|
336 |
if __name__ == "__main__":
|
337 |
+
main()
|