Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,8 @@
|
|
1 |
-
import
|
2 |
-
from
|
3 |
-
import streamlit.components.v1 as components
|
4 |
-
from datasets import load_dataset
|
5 |
-
import random
|
6 |
import pickle
|
7 |
-
from
|
8 |
-
import nltk
|
9 |
from PyPDF2 import PdfReader
|
10 |
-
import streamlit as st
|
11 |
from streamlit_extras.add_vertical_space import add_vertical_space
|
12 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
13 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
@@ -15,9 +10,7 @@ from langchain.vectorstores import FAISS
|
|
15 |
from langchain.llms import OpenAI
|
16 |
from langchain.chains.question_answering import load_qa_chain
|
17 |
from langchain.callbacks import get_openai_callback
|
18 |
-
|
19 |
-
|
20 |
-
nltk.download('punkt')
|
21 |
|
22 |
# Step 1: Clone the Dataset Repository
|
23 |
repo = Repository(
|
@@ -34,39 +27,49 @@ repo.git_pull() # Pull the latest changes (if any)
|
|
34 |
pdf_file_path = "Private_Book/Glossar_PDF_webscraping.pdf" # Replace with your PDF file path
|
35 |
|
36 |
|
|
|
37 |
# Sidebar contents
|
38 |
with st.sidebar:
|
39 |
-
st.title(':
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
# Retrieve the API key from st.secrets
|
44 |
-
|
45 |
-
|
46 |
-
if not api_key:
|
47 |
-
st.warning('API key is required to proceed.')
|
48 |
-
st.stop() # Stop the app if the API key is not provided
|
49 |
|
50 |
-
st.markdown("Experience the future of document interaction with the revolutionary")
|
51 |
st.markdown("**BinDocs Chat App**.")
|
|
|
|
|
52 |
st.markdown("Harnessing the power of a Large Language Model and AI technology,")
|
|
|
|
|
|
|
53 |
st.markdown("this innovative platform redefines PDF engagement,")
|
|
|
54 |
st.markdown("enabling dynamic conversations that bridge the gap between")
|
55 |
st.markdown("human and machine intelligence.")
|
56 |
|
|
|
|
|
57 |
add_vertical_space(3) # Add more vertical space between text blocks
|
58 |
-
st.write('Made with ❤️ by
|
|
|
|
|
|
|
59 |
|
60 |
def load_pdf(file_path):
|
61 |
pdf_reader = PdfReader(file_path)
|
62 |
-
|
63 |
for page in pdf_reader.pages:
|
64 |
-
text
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
70 |
if os.path.exists(f"{store_name}.pkl"):
|
71 |
with open(f"{store_name}.pkl", "rb") as f:
|
72 |
VectorStore = pickle.load(f)
|
@@ -79,86 +82,78 @@ def load_pdf(file_path):
|
|
79 |
return VectorStore
|
80 |
|
81 |
|
82 |
-
def load_chatbot(max_tokens=300):
|
83 |
-
return load_qa_chain(llm=OpenAI(temperature=0.1, max_tokens=max_tokens), chain_type="stuff")
|
84 |
-
|
85 |
-
|
86 |
-
def display_chat_history(chat_history):
|
87 |
-
for chat in chat_history:
|
88 |
-
background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf"
|
89 |
-
st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
|
90 |
-
|
91 |
-
def remove_incomplete_sentences(text):
|
92 |
-
sentences = sent_tokenize(text)
|
93 |
-
complete_sentences = [sent for sent in sentences if sent.endswith(('.', '!', '?'))]
|
94 |
-
return ' '.join(complete_sentences)
|
95 |
-
|
96 |
-
def remove_redundant_information(text):
|
97 |
-
sentences = sent_tokenize(text)
|
98 |
-
unique_sentences = list(set(sentences))
|
99 |
-
return ' '.join(unique_sentences)
|
100 |
-
|
101 |
-
# Define a maximum token limit to avoid infinite loops
|
102 |
-
MAX_TOKEN_LIMIT = 400
|
103 |
-
|
104 |
-
import random
|
105 |
|
|
|
|
|
106 |
|
107 |
def main():
|
108 |
st.title("BinDocs Chat App")
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
if "chat_history" not in st.session_state:
|
111 |
st.session_state['chat_history'] = []
|
112 |
|
113 |
display_chat_history(st.session_state['chat_history'])
|
114 |
|
|
|
|
|
|
|
|
|
115 |
new_messages_placeholder = st.empty()
|
116 |
|
117 |
-
|
|
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
st.session_state['chat_history'].append(("User", query, "new"))
|
129 |
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
chain = load_chatbot(max_tokens=max_tokens)
|
136 |
-
docs = VectorStore.similarity_search(query=query, k=2)
|
137 |
-
|
138 |
-
with get_openai_callback() as cb:
|
139 |
-
response = chain.run(input_documents=docs, question=query)
|
140 |
|
141 |
-
|
142 |
-
filtered_response = remove_incomplete_sentences(response)
|
143 |
-
filtered_response = remove_redundant_information(filtered_response)
|
144 |
-
|
145 |
-
st.session_state['chat_history'].append(("Bot", filtered_response, "new"))
|
146 |
|
|
|
147 |
new_messages = st.session_state['chat_history'][-2:]
|
148 |
for chat in new_messages:
|
149 |
background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf"
|
150 |
new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
|
151 |
|
|
|
152 |
st.write("<script>document.getElementById('response').scrollIntoView();</script>", unsafe_allow_html=True)
|
153 |
|
154 |
loading_message.empty()
|
155 |
|
|
|
156 |
query = ""
|
157 |
-
else:
|
158 |
-
st.warning("Please enter a query before asking questions.")
|
159 |
|
160 |
-
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
if __name__ == "__main__":
|
164 |
-
main()
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from dotenv import load_dotenv
|
|
|
|
|
|
|
3 |
import pickle
|
4 |
+
from huggingface_hub import Repository
|
|
|
5 |
from PyPDF2 import PdfReader
|
|
|
6 |
from streamlit_extras.add_vertical_space import add_vertical_space
|
7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
|
|
10 |
from langchain.llms import OpenAI
|
11 |
from langchain.chains.question_answering import load_qa_chain
|
12 |
from langchain.callbacks import get_openai_callback
|
13 |
+
import os
|
|
|
|
|
14 |
|
15 |
# Step 1: Clone the Dataset Repository
|
16 |
repo = Repository(
|
|
|
27 |
pdf_file_path = "Private_Book/Glossar_PDF_webscraping.pdf" # Replace with your PDF file path
|
28 |
|
29 |
|
30 |
+
|
31 |
# Sidebar contents
|
32 |
with st.sidebar:
|
33 |
+
st.title(':orange[BinDoc GmbH]')
|
34 |
+
st.markdown(
|
35 |
+
"Experience the future of document interaction with the revolutionary"
|
36 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
|
|
38 |
st.markdown("**BinDocs Chat App**.")
|
39 |
+
|
40 |
+
|
41 |
st.markdown("Harnessing the power of a Large Language Model and AI technology,")
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
st.markdown("this innovative platform redefines PDF engagement,")
|
46 |
+
|
47 |
st.markdown("enabling dynamic conversations that bridge the gap between")
|
48 |
st.markdown("human and machine intelligence.")
|
49 |
|
50 |
+
|
51 |
+
|
52 |
add_vertical_space(3) # Add more vertical space between text blocks
|
53 |
+
st.write('Made with ❤️ by Anne')
|
54 |
+
|
55 |
+
api_key = os.getenv("OPENAI_API_KEY")
|
56 |
+
# Retrieve the API key from st.secrets
|
57 |
|
58 |
def load_pdf(file_path):
|
59 |
pdf_reader = PdfReader(file_path)
|
60 |
+
text = ""
|
61 |
for page in pdf_reader.pages:
|
62 |
+
text += page.extract_text()
|
63 |
+
|
64 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
65 |
+
chunk_size=1000,
|
66 |
+
chunk_overlap=200,
|
67 |
+
length_function=len
|
68 |
+
)
|
69 |
+
chunks = text_splitter.split_text(text=text)
|
70 |
+
|
71 |
+
store_name, _ = os.path.splitext(os.path.basename(file_path))
|
72 |
+
|
73 |
if os.path.exists(f"{store_name}.pkl"):
|
74 |
with open(f"{store_name}.pkl", "rb") as f:
|
75 |
VectorStore = pickle.load(f)
|
|
|
82 |
return VectorStore
|
83 |
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
def load_chatbot():
|
87 |
+
return load_qa_chain(llm=OpenAI(), chain_type="stuff")
|
88 |
|
89 |
def main():
|
90 |
st.title("BinDocs Chat App")
|
91 |
|
92 |
+
|
93 |
+
# Directly specifying the path to the PDF file
|
94 |
+
pdf_path = pdf_file_path
|
95 |
+
if not os.path.exists(pdf_path):
|
96 |
+
st.error("File not found. Please check the file path.")
|
97 |
+
return
|
98 |
+
|
99 |
if "chat_history" not in st.session_state:
|
100 |
st.session_state['chat_history'] = []
|
101 |
|
102 |
display_chat_history(st.session_state['chat_history'])
|
103 |
|
104 |
+
st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
|
105 |
+
st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
|
106 |
+
st.write("<!-- End Spacer -->", unsafe_allow_html=True)
|
107 |
+
|
108 |
new_messages_placeholder = st.empty()
|
109 |
|
110 |
+
if pdf_path is not None:
|
111 |
+
query = st.text_input("Ask questions about your PDF file (in any preferred language):")
|
112 |
|
113 |
+
if st.button("Was genau ist ein Belegarzt?"):
|
114 |
+
query = "Was genau ist ein Belegarzt?"
|
115 |
+
if st.button("Wofür wird die Alpha-ID verwendet?"):
|
116 |
+
query = "Wofür wird die Alpha-ID verwendet?"
|
117 |
+
if st.button("Was sind die Vorteile des ambulanten operierens?"):
|
118 |
+
query = "Was sind die Vorteile des ambulanten operierens?"
|
119 |
+
|
120 |
+
if st.button("Ask") or (not st.session_state['chat_history'] and query) or (st.session_state['chat_history'] and query != st.session_state['chat_history'][-1][1]):
|
121 |
+
st.session_state['chat_history'].append(("User", query, "new"))
|
122 |
|
123 |
+
loading_message = st.empty()
|
124 |
+
loading_message.text('Bot is thinking...')
|
|
|
125 |
|
126 |
+
VectorStore = load_pdf(pdf_path)
|
127 |
+
chain = load_chatbot()
|
128 |
+
docs = VectorStore.similarity_search(query=query, k=3)
|
129 |
+
with get_openai_callback() as cb:
|
130 |
+
response = chain.run(input_documents=docs, question=query)
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
+
st.session_state['chat_history'].append(("Bot", response, "new"))
|
|
|
|
|
|
|
|
|
133 |
|
134 |
+
# Display new messages at the bottom
|
135 |
new_messages = st.session_state['chat_history'][-2:]
|
136 |
for chat in new_messages:
|
137 |
background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf"
|
138 |
new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
|
139 |
|
140 |
+
# Scroll to the latest response using JavaScript
|
141 |
st.write("<script>document.getElementById('response').scrollIntoView();</script>", unsafe_allow_html=True)
|
142 |
|
143 |
loading_message.empty()
|
144 |
|
145 |
+
# Clear the input field by setting the query variable to an empty string
|
146 |
query = ""
|
|
|
|
|
147 |
|
148 |
+
# Mark all messages as old after displaying
|
149 |
+
st.session_state['chat_history'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history']]
|
150 |
+
|
151 |
+
|
152 |
+
|
153 |
+
def display_chat_history(chat_history):
|
154 |
+
for chat in chat_history:
|
155 |
+
background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf"
|
156 |
+
st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
|
157 |
|
158 |
if __name__ == "__main__":
|
159 |
+
main()
|