Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import os
|
2 |
from datasets import load_dataset
|
|
|
3 |
import pickle
|
4 |
from nltk.tokenize import sent_tokenize
|
5 |
import nltk
|
@@ -83,6 +84,23 @@ def remove_redundant_information(text):
|
|
83 |
# Define a maximum token limit to avoid infinite loops
|
84 |
MAX_TOKEN_LIMIT = 400
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
def main():
|
87 |
st.title("BinDocs Chat App")
|
88 |
|
@@ -102,17 +120,11 @@ def main():
|
|
102 |
</style>
|
103 |
""", unsafe_allow_html=True)
|
104 |
|
105 |
-
|
106 |
-
|
107 |
if "chat_history" not in st.session_state:
|
108 |
st.session_state['chat_history'] = []
|
109 |
|
110 |
display_chat_history(st.session_state['chat_history'])
|
111 |
|
112 |
-
st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
|
113 |
-
st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
|
114 |
-
st.write("<!-- End Spacer -->", unsafe_allow_html=True)
|
115 |
-
|
116 |
new_messages_placeholder = st.empty()
|
117 |
|
118 |
pdf = st.file_uploader("Upload your PDF", type="pdf")
|
@@ -134,37 +146,51 @@ def main():
|
|
134 |
|
135 |
with get_openai_callback() as cb:
|
136 |
response = chain.run(input_documents=docs, question=query)
|
137 |
-
|
138 |
# Post-processing to remove incomplete sentences and redundant information
|
139 |
filtered_response = remove_incomplete_sentences(response)
|
140 |
filtered_response = remove_redundant_information(filtered_response)
|
141 |
|
142 |
-
#
|
143 |
-
|
144 |
-
|
145 |
-
chain = load_chatbot(max_tokens=max_tokens)
|
146 |
-
additional_response = chain.run(input_documents=docs, question=query)
|
147 |
-
filtered_response += additional_response # Append the additional response to the filtered_response
|
148 |
|
149 |
st.session_state['chat_history'].append(("Bot", filtered_response, "new"))
|
150 |
|
151 |
-
# Display new messages at the bottom
|
152 |
new_messages = st.session_state['chat_history'][-2:]
|
153 |
for chat in new_messages:
|
154 |
background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf"
|
155 |
new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
|
156 |
|
157 |
-
# Scroll to the latest response using JavaScript
|
158 |
st.write("<script>document.getElementById('response').scrollIntoView();</script>", unsafe_allow_html=True)
|
159 |
|
160 |
loading_message.empty()
|
161 |
|
162 |
-
# Clear the input field by setting the query variable to an empty string
|
163 |
query = ""
|
164 |
|
165 |
-
# Mark all messages as old after displaying
|
166 |
st.session_state['chat_history'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history']]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
if __name__ == "__main__":
|
169 |
main()
|
170 |
-
|
|
|
1 |
import os
|
2 |
from datasets import load_dataset
|
3 |
+
import random
|
4 |
import pickle
|
5 |
from nltk.tokenize import sent_tokenize
|
6 |
import nltk
|
|
|
84 |
# Define a maximum token limit to avoid infinite loops
|
85 |
MAX_TOKEN_LIMIT = 400
|
86 |
|
87 |
+
import random
|
88 |
+
|
89 |
+
def generate_dynamic_question(text_chunks):
|
90 |
+
# Randomly pick a sentence from the text chunks and frame a question
|
91 |
+
random_sentence = random.choice(text_chunks)
|
92 |
+
return f"What is the significance of: '{random_sentence}'?"
|
93 |
+
|
94 |
+
def display_example_questions(dynamic_question):
|
95 |
+
if not st.session_state['chat_history']:
|
96 |
+
st.markdown("""
|
97 |
+
<div class="question-box" id="question1">Was genau ist ein Belegarzt?</div>
|
98 |
+
<div class="question-box" id="question2">Wofür wird die Alpha-ID verwendet?</div>
|
99 |
+
<br>
|
100 |
+
<div class="question-box" id="question3">Was sind die Vorteile des ambulanten operierens?</div>
|
101 |
+
<div class="question-box" id="question4">AI Generated Question: {0}</div>
|
102 |
+
""".format(dynamic_question), unsafe_allow_html=True)
|
103 |
+
|
104 |
def main():
|
105 |
st.title("BinDocs Chat App")
|
106 |
|
|
|
120 |
</style>
|
121 |
""", unsafe_allow_html=True)
|
122 |
|
|
|
|
|
123 |
if "chat_history" not in st.session_state:
|
124 |
st.session_state['chat_history'] = []
|
125 |
|
126 |
display_chat_history(st.session_state['chat_history'])
|
127 |
|
|
|
|
|
|
|
|
|
128 |
new_messages_placeholder = st.empty()
|
129 |
|
130 |
pdf = st.file_uploader("Upload your PDF", type="pdf")
|
|
|
146 |
|
147 |
with get_openai_callback() as cb:
|
148 |
response = chain.run(input_documents=docs, question=query)
|
149 |
+
|
150 |
# Post-processing to remove incomplete sentences and redundant information
|
151 |
filtered_response = remove_incomplete_sentences(response)
|
152 |
filtered_response = remove_redundant_information(filtered_response)
|
153 |
|
154 |
+
# Dynamic question generation and display example questions
|
155 |
+
dynamic_question = generate_dynamic_question(chunks)
|
156 |
+
display_example_questions(dynamic_question)
|
|
|
|
|
|
|
157 |
|
158 |
st.session_state['chat_history'].append(("Bot", filtered_response, "new"))
|
159 |
|
|
|
160 |
new_messages = st.session_state['chat_history'][-2:]
|
161 |
for chat in new_messages:
|
162 |
background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf"
|
163 |
new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
|
164 |
|
|
|
165 |
st.write("<script>document.getElementById('response').scrollIntoView();</script>", unsafe_allow_html=True)
|
166 |
|
167 |
loading_message.empty()
|
168 |
|
|
|
169 |
query = ""
|
170 |
|
|
|
171 |
st.session_state['chat_history'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history']]
|
172 |
+
|
173 |
+
# JavaScript for handling question box clicks
|
174 |
+
st.markdown("""
|
175 |
+
<script>
|
176 |
+
document.getElementById('question1').onclick = function() {
|
177 |
+
document.querySelector('input').value = 'Was genau ist ein Belegarzt?';
|
178 |
+
document.querySelector('input').dispatchEvent(new Event('change'));
|
179 |
+
};
|
180 |
+
document.getElementById('question2').onclick = function() {
|
181 |
+
document.querySelector('input').value = 'Wofür wird die Alpha-ID verwendet?';
|
182 |
+
document.querySelector('input').dispatchEvent(new Event('change'));
|
183 |
+
};
|
184 |
+
document.getElementById('question3').onclick = function() {
|
185 |
+
document.querySelector('input').value = 'Was sind die Vorteile des ambulanten operierens?';
|
186 |
+
document.querySelector('input').dispatchEvent(new Event('change'));
|
187 |
+
};
|
188 |
+
document.getElementById('question4').onclick = function() {
|
189 |
+
document.querySelector('input').value = 'AI Generated Question: {0}';
|
190 |
+
document.querySelector('input').dispatchEvent(new Event('change'));
|
191 |
+
};
|
192 |
+
</script>
|
193 |
+
""".format(dynamic_question), unsafe_allow_html=True)
|
194 |
|
195 |
if __name__ == "__main__":
|
196 |
main()
|
|