File size: 6,559 Bytes
f7c8a78
 
 
 
b322b24
 
d897b8a
b322b24
d89bac8
 
f4d0320
 
 
 
f7c8a78
0f1be6d
b322b24
f7c8a78
d89bac8
 
 
 
 
 
 
 
 
 
 
 
f7c8a78
 
 
 
 
 
 
 
 
d897b8a
b322b24
 
 
d89bac8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d897b8a
d89bac8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d897b8a
b322b24
f7c8a78
 
 
 
d1eb12b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7c8a78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b322b24
 
 
d897b8a
 
 
 
b322b24
 
 
d897b8a
b322b24
 
d89bac8
d897b8a
b322b24
d897b8a
d89bac8
d897b8a
d89bac8
f7c8a78
 
 
 
 
 
d897b8a
 
 
f7c8a78
 
d897b8a
f7c8a78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import streamlit as st
from transformers import pipeline
import google.generativeai as genai
from pytube import Search
import speech_recognition as sr
import tempfile
from audio_recorder_streamlit import audio_recorder
import numpy as np
import wave
import io
import logging

# Set up logging
logging.basicConfig(level=logging.DEBUG)

# Load sentiment analysis model using PyTorch backend
mood_classifier = pipeline("sentiment-analysis", framework="pt")

def convert_audio_to_wav(audio_bytes):
    # Create a wave file in memory
    wav_buffer = io.BytesIO()
    
    with wave.open(wav_buffer, 'wb') as wav_file:
        wav_file.setnchannels(1)  # Mono
        wav_file.setsampwidth(2)  # 2 bytes per sample
        wav_file.setframerate(44100)  # Sample rate
        wav_file.writeframes(audio_bytes)
    
    return wav_buffer.getvalue()

def detect_mood(text):
    result = mood_classifier(text)[0]
    if result['label'] == 'POSITIVE':
        return "joyful"
    elif result['label'] == 'NEGATIVE':
        return "sad"
    else:
        return "neutral"

def speech_to_text():
    # Initialize recognizer
    r = sr.Recognizer()
    
    # Add audio recording widget
    audio_bytes = audio_recorder(
        text="Click to record your mood",
        recording_color="#e8b62c",
        neutral_color="#6aa36f",
        pause_threshold=2.0  # Automatically stop after 2 seconds of silence
    )
    
    if audio_bytes:
        try:
            # Create a temporary WAV file
            with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio:
                # Convert and write audio bytes to WAV format
                wav_bytes = convert_audio_to_wav(audio_bytes)
                temp_audio.write(wav_bytes)
                temp_audio.flush()
                
                # Use the temporary file for speech recognition
                with sr.AudioFile(temp_audio.name) as source:
                    # Record the audio file
                    audio = r.record(source)
                    
                    try:
                        # Attempt speech recognition
                        text = r.recognize_google(audio)
                        st.success("Speech recognized successfully!")
                        return text
                    except sr.UnknownValueError:
                        st.error("Could not understand the audio. Please try speaking clearly and try again.")
                        return None
                    except sr.RequestError as e:
                        st.error(f"Could not request results from speech recognition service; {e}")
                        return None
        except Exception as e:
            st.error(f"Error processing audio: {e}")
            return None
    return None

def get_song_recommendations(mood, api_key):
    try:
        genai.configure(api_key=api_key)
        model = genai.GenerativeModel('gemini-pro')
        # System prompt to guide the AI
        system_prompt = """
        You are a music recommendation assistant specialized in Indian songs. Your task is to suggest popular Indian songs based on the user's mood.
        - If the mood is "happy," suggest upbeat and joyful Bollywood or Indian pop songs.
        - If the mood is "sad," suggest emotional and soulful Indian songs.
        - If the mood is "energetic," suggest high-energy dance or workout songs.
        - If the mood is "romantic," suggest romantic Bollywood or Indian love songs.
        - If the mood is "calm," suggest soothing Indian classical or instrumental music.
        Always suggest 3 songs and provide the song title and artist name in the format:
        1. Song Title - Artist Name
        2. Song Title - Artist Name
        3. Song Title - Artist Name
        """
        
        # User prompt
        user_prompt = f"Suggest 3 popular Indian {mood} songs."
        
        # Combine system and user prompts
        response = model.generate_content([system_prompt, user_prompt])
        return response.text
    except Exception as e:
        st.error(f"Error using Gemini API: {e}")
        return None

def search_youtube(query):
    search = Search(query)
    return search.results[0].watch_url

# Streamlit App
st.title("๐ŸŽต Mood-Based Indian Song Player")

# Sidebar for user input
st.sidebar.header("How are you feeling today?")
mood_options = ["happy", "sad", "energetic", "romantic", "calm"]

# Input for Gemini API key
gemini_api_key = st.sidebar.text_input("Enter your Gemini API Key:", type="password")

# Add option to choose between text and speech input
input_method = st.sidebar.radio("Choose input method:", ["Text", "Speech"])

# Initialize user_mood as None
user_mood = None
user_text = None

if input_method == "Text":
    # Text input
    user_mood = st.sidebar.selectbox("Select your mood:", mood_options)
    user_text = user_mood
else:
    # Speech input
    st.write("๐Ÿ“ข Click the button below and tell me about your day...")
    user_text = speech_to_text()
    
    if user_text:
        st.info(f"You said: '{user_text}'")
        user_mood = detect_mood(user_text)
        st.write(f"Based on what you said, I detect your mood as: **{user_mood}**")

# Playlist
if 'playlist' not in st.session_state:
    st.session_state.playlist = []

# Main content
if user_text and gemini_api_key:
    detected_mood = detect_mood(user_text)
    st.write(f"๐ŸŽญ Detected Mood: **{detected_mood}**")
    
    st.write("๐ŸŽต Recommended Songs:")
    recommendations = get_song_recommendations(detected_mood, gemini_api_key)
    if recommendations:
        st.write(recommendations)
        
        song_names = recommendations.split("\n")
        for song in song_names:
            if song.strip():
                st.write(f"๐Ÿ” Searching for: **{song}**")
                video_url = search_youtube(song)
                st.video(video_url)
                
                # Add to playlist button
                if st.button(f"Add '{song}' to Playlist"):
                    st.session_state.playlist.append((song, video_url))
                    st.success(f"Added '{song}' to your playlist!")
    else:
        st.error("Failed to get song recommendations. Please check your API key.")
elif not gemini_api_key:
    st.warning("Please enter your Gemini API key to get started.")

# Display the playlist
st.sidebar.header("Your Playlist")
for idx, (song, url) in enumerate(st.session_state.playlist):
    st.sidebar.write(f"{idx + 1}. {song}")
    if st.sidebar.button(f"Play {song}", key=f"play_{idx}"):
        st.video(url)